Performance analysis of reconfigurable magnetic tunnel junction based on SGS and HMM materials under bias voltages in VSe2/hBN/MnSe2

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Shagufta Parveen Asif Akhtar, Santashraya Prasad, Aminul Islam
{"title":"Performance analysis of reconfigurable magnetic tunnel junction based on SGS and HMM materials under bias voltages in VSe2/hBN/MnSe2","authors":"Shagufta Parveen Asif Akhtar,&nbsp;Santashraya Prasad,&nbsp;Aminul Islam","doi":"10.1016/j.physb.2025.417806","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic tunnel junctions (MTJs) are key components in spintronic devices, where performance is strongly influenced by the choice of electrode and barrier materials. This work investigates a reconfigurable MTJ based on a VSe<sub>2</sub>/hBN/MnSe<sub>2</sub> heterostructure using first-principles and quantum transport simulations. VSe<sub>2</sub> acts as a spin-gapless semiconductor, MnSe<sub>2</sub> as a half-metallic magnet, and hBN as a two-dimensional tunneling barrier. The device demonstrates an inverse tunnel magnetoresistance (TMR) effect with diode-like behavior across −0.5 to 0.5 V. A maximum TMR of 2060.01 % is obtained at −0.5 V, while −79.11 % appears at +0.5 V. Vacancy analysis at zero bias reveals that Mn-site defects suppress TMR to −100.00 %, whereas V-site vacancy produce a less severe reduction, with TMR at −37.81 %. Combining spin-gapless semiconductor and half-metallic magnet electrodes with a van der Waals barrier enhances spin filtering, tunability, and multifunctional transport, making this design promising for energy-efficient spintronic memory and logic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417806"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009238","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic tunnel junctions (MTJs) are key components in spintronic devices, where performance is strongly influenced by the choice of electrode and barrier materials. This work investigates a reconfigurable MTJ based on a VSe2/hBN/MnSe2 heterostructure using first-principles and quantum transport simulations. VSe2 acts as a spin-gapless semiconductor, MnSe2 as a half-metallic magnet, and hBN as a two-dimensional tunneling barrier. The device demonstrates an inverse tunnel magnetoresistance (TMR) effect with diode-like behavior across −0.5 to 0.5 V. A maximum TMR of 2060.01 % is obtained at −0.5 V, while −79.11 % appears at +0.5 V. Vacancy analysis at zero bias reveals that Mn-site defects suppress TMR to −100.00 %, whereas V-site vacancy produce a less severe reduction, with TMR at −37.81 %. Combining spin-gapless semiconductor and half-metallic magnet electrodes with a van der Waals barrier enhances spin filtering, tunability, and multifunctional transport, making this design promising for energy-efficient spintronic memory and logic applications.
基于SGS和HMM材料的可重构磁隧道结在VSe2/hBN/MnSe2偏置电压下的性能分析
磁隧道结(MTJs)是自旋电子器件的关键部件,其性能受到电极和势垒材料选择的强烈影响。本文利用第一性原理和量子输运模拟研究了基于VSe2/hBN/MnSe2异质结构的可重构MTJ。VSe2作为自旋无间隙半导体,MnSe2作为半金属磁铁,hBN作为二维隧道势垒。该器件在−0.5至0.5 V范围内具有类似二极管的反隧道磁阻(TMR)效应。在−0.5 V时TMR最大值为2060.01%,而在+0.5 V时TMR最大值为- 79.11 %。零偏置空位分析表明,mn位缺陷将TMR抑制至- 100.00%,而v位空位对TMR的影响较小,为- 37.81%。将自旋无间隙半导体和半金属磁铁电极与范德华势垒相结合,增强了自旋滤波、可调性和多功能输运,使该设计有望用于节能自旋电子存储器和逻辑应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信