Byung Sun Yoon , Ki Cheol Kim , Min-Jae Kim , Jae-Rang Youn , Mincheol Kim , Taesung Jung , Sang Goo Jeon , Woohyun Kim , Chang Hyun Ko
{"title":"Production of CO2-free hydrogen via catalytic methane decomposition over Ce-promoted Ni/Al2O3 catalysts","authors":"Byung Sun Yoon , Ki Cheol Kim , Min-Jae Kim , Jae-Rang Youn , Mincheol Kim , Taesung Jung , Sang Goo Jeon , Woohyun Kim , Chang Hyun Ko","doi":"10.1016/j.fuproc.2025.108338","DOIUrl":null,"url":null,"abstract":"<div><div>Catalytic methane decomposition (CMD) is a promising reaction for CO<sub>2</sub>-free hydrogen production, as it generates no CO<sub>2</sub> emissions and produces solid carbon byproducts. However, catalyst deactivation due to carbon accumulation necessitates the development of catalysts with high activity, stability, and high capacity for carbon products. In this study, Ce-promoted Ni/Al<sub>2</sub>O<sub>3</sub> catalysts were synthesized with varying Ce loadings to investigate the role of Ce in enhancing catalyst performance. The addition of Ce was found to weaken the interaction between Ni and Al<sub>2</sub>O<sub>3</sub>, thereby increasing the surface concentration of metallic Ni<sup>0</sup> and improving catalytic activity. Nevertheless, excessive Ce loading resulted in performance deterioration, primarily due to a significant reduction in mesoporous volume. This loss of physical space limited the growth of carbon products and hindered catalyst effectiveness. The results highlight the need to balance the promotional effects of Ce with the preservation of pore structure to optimize catalyst design for CMD.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108338"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic methane decomposition (CMD) is a promising reaction for CO2-free hydrogen production, as it generates no CO2 emissions and produces solid carbon byproducts. However, catalyst deactivation due to carbon accumulation necessitates the development of catalysts with high activity, stability, and high capacity for carbon products. In this study, Ce-promoted Ni/Al2O3 catalysts were synthesized with varying Ce loadings to investigate the role of Ce in enhancing catalyst performance. The addition of Ce was found to weaken the interaction between Ni and Al2O3, thereby increasing the surface concentration of metallic Ni0 and improving catalytic activity. Nevertheless, excessive Ce loading resulted in performance deterioration, primarily due to a significant reduction in mesoporous volume. This loss of physical space limited the growth of carbon products and hindered catalyst effectiveness. The results highlight the need to balance the promotional effects of Ce with the preservation of pore structure to optimize catalyst design for CMD.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.