{"title":"Additively manufactured copper surfaces with porous microfeatures for enhanced pool boiling performance","authors":"Tadej Bregar , Armin Hadžić , John Robinson , Alexandros Askounis , Matevž Zupančič , Iztok Golobič","doi":"10.1016/j.ijthermalsci.2025.110325","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates pool boiling on additively manufactured copper surfaces with various microstructures, using distilled water under saturated atmospheric conditions. Initially, heat-treated and untreated samples were compared to assess thermal conductivity effects. Heat-treated samples, despite higher thermal conductivity, generally showed lower heat transfer coefficients (HTC) due to smoother surfaces and fewer active nucleation sites. Further testing involved heat-treated surfaces with channels, tunnels, chimneys, and pillars of varying heights, benchmarked against a flat surface. Chimney structures achieved the highest enhancements, surpassing 3000 kW m<sup>−2</sup> in maximum heat flux and an HTC of 260 kW m<sup>−2</sup> K<sup>−1</sup>, which is a 400 % improvement compared to the reference. Their superior performance resulted from efficient liquid-vapor separation, capillary wicking, and favorable bubble dynamics facilitated by their geometry. Pillar structures significantly enhanced critical heat flux but had limited HTC due to vapor entrapment and bubble coalescence. In contrast, chimney features provided balanced boiling performance across diverse heat fluxes. Overall, this study demonstrates the promise of laser powder bed fusion to create advanced copper surfaces for effective thermal management applications, particularly in systems demanding high heat dissipation, minimal surface superheat, and complex geometries.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110325"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925006489","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates pool boiling on additively manufactured copper surfaces with various microstructures, using distilled water under saturated atmospheric conditions. Initially, heat-treated and untreated samples were compared to assess thermal conductivity effects. Heat-treated samples, despite higher thermal conductivity, generally showed lower heat transfer coefficients (HTC) due to smoother surfaces and fewer active nucleation sites. Further testing involved heat-treated surfaces with channels, tunnels, chimneys, and pillars of varying heights, benchmarked against a flat surface. Chimney structures achieved the highest enhancements, surpassing 3000 kW m−2 in maximum heat flux and an HTC of 260 kW m−2 K−1, which is a 400 % improvement compared to the reference. Their superior performance resulted from efficient liquid-vapor separation, capillary wicking, and favorable bubble dynamics facilitated by their geometry. Pillar structures significantly enhanced critical heat flux but had limited HTC due to vapor entrapment and bubble coalescence. In contrast, chimney features provided balanced boiling performance across diverse heat fluxes. Overall, this study demonstrates the promise of laser powder bed fusion to create advanced copper surfaces for effective thermal management applications, particularly in systems demanding high heat dissipation, minimal surface superheat, and complex geometries.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.