Pattern recovery by SLOPE

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Małgorzata Bogdan , Xavier Dupuis , Piotr Graczyk , Bartosz Kołodziejek , Tomasz Skalski , Patrick Tardivel , Maciej Wilczyński
{"title":"Pattern recovery by SLOPE","authors":"Małgorzata Bogdan ,&nbsp;Xavier Dupuis ,&nbsp;Piotr Graczyk ,&nbsp;Bartosz Kołodziejek ,&nbsp;Tomasz Skalski ,&nbsp;Patrick Tardivel ,&nbsp;Maciej Wilczyński","doi":"10.1016/j.acha.2025.101810","DOIUrl":null,"url":null,"abstract":"<div><div>SLOPE is a popular method for dimensionality reduction in high-dimensional regression. Its estimated coefficients can be zero, yielding sparsity, or equal in absolute value, yielding clustering. As a result, SLOPE can eliminate irrelevant predictors and identify groups of predictors that have the same influence on the response. The concept of the SLOPE pattern allows us to formalize and study its sparsity and clustering properties. In particular, the SLOPE pattern of a coefficient vector captures the signs of its components (positive, negative, or zero), the clusters (groups of coefficients with the same absolute value), and the ranking of those clusters. This is the first paper to thoroughly investigate the consistency of the SLOPE pattern. We establish necessary and sufficient conditions for SLOPE pattern recovery, which in turn enable the derivation of an irrepresentability condition for SLOPE given a fixed design matrix <span><math><mi>X</mi></math></span>. These results lay the groundwork for a comprehensive asymptotic analysis of SLOPE pattern consistency.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"80 ","pages":"Article 101810"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000648","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SLOPE is a popular method for dimensionality reduction in high-dimensional regression. Its estimated coefficients can be zero, yielding sparsity, or equal in absolute value, yielding clustering. As a result, SLOPE can eliminate irrelevant predictors and identify groups of predictors that have the same influence on the response. The concept of the SLOPE pattern allows us to formalize and study its sparsity and clustering properties. In particular, the SLOPE pattern of a coefficient vector captures the signs of its components (positive, negative, or zero), the clusters (groups of coefficients with the same absolute value), and the ranking of those clusters. This is the first paper to thoroughly investigate the consistency of the SLOPE pattern. We establish necessary and sufficient conditions for SLOPE pattern recovery, which in turn enable the derivation of an irrepresentability condition for SLOPE given a fixed design matrix X. These results lay the groundwork for a comprehensive asymptotic analysis of SLOPE pattern consistency.
利用斜率恢复模式
SLOPE是高维回归中常用的降维方法。其估计系数可以为零,产生稀疏性,或者绝对值相等,产生聚类。因此,SLOPE可以消除不相关的预测因子,并确定对响应具有相同影响的预测因子组。SLOPE模式的概念允许我们形式化并研究其稀疏性和聚类属性。特别是,系数向量的SLOPE模式捕获其分量的符号(正、负或零)、聚类(具有相同绝对值的系数组)以及这些聚类的排名。这是第一篇深入研究SLOPE模式一致性的论文。我们建立了SLOPE图恢复的充分必要条件,从而推导出给定固定设计矩阵x的SLOPE的不可表示性条件,这些结果为斜率图一致性的全面渐近分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信