Demystifying Carleson frames

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Ilya Krishtal, Brendan Miller
{"title":"Demystifying Carleson frames","authors":"Ilya Krishtal,&nbsp;Brendan Miller","doi":"10.1016/j.acha.2025.101811","DOIUrl":null,"url":null,"abstract":"<div><div>We study spanning properties of Carleson systems and prove a recent conjecture on frame subsequences of Carleson frames. In particular, we show that if <span><math><msubsup><mrow><mo>{</mo><msup><mi>T</mi><mi>k</mi></msup><mi>φ</mi><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>∞</mi></msubsup></math></span> is a Carleson frame, then every subsequence of the form <span><math><msubsup><mrow><mo>{</mo><msup><mi>T</mi><mrow><mi>N</mi><mi>k</mi><mo>+</mo><msub><mi>j</mi><mi>k</mi></msub></mrow></msup><mi>φ</mi><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>∞</mi></msubsup></math></span> where <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mi>j</mi><mi>k</mi></msub><mo>&lt;</mo><mi>N</mi></mrow></math></span> is also a frame.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"80 ","pages":"Article 101811"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032500065X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study spanning properties of Carleson systems and prove a recent conjecture on frame subsequences of Carleson frames. In particular, we show that if {Tkφ}k=0 is a Carleson frame, then every subsequence of the form {TNk+jkφ}k=0 where NN and 0jk<N is also a frame.
揭开卡尔森镜框的神秘面纱
我们研究了Carleson系统的生成性质,并证明了Carleson框架子序列的一个新猜想。特别地,我们证明了如果{Tkφ}k=0∞是一个Carleson帧,那么形式为{TNk+jkφ}k=0∞且N∈N且0≤jk<;N的每个子序列也是一个帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信