Mingming Wang , Zihan Kan , Tingting Hui , Boyi Song , Huiliang Liu , Benfeng Yin , Ye Tao , Xiaoying Rong , Wei Hang , Yuanming Zhang , Xiaobing Zhou
{"title":"The development of biological soil crusts reshapes the strategies of non-structural carbohydrates in response to nitrogen deposition","authors":"Mingming Wang , Zihan Kan , Tingting Hui , Boyi Song , Huiliang Liu , Benfeng Yin , Ye Tao , Xiaoying Rong , Wei Hang , Yuanming Zhang , Xiaobing Zhou","doi":"10.1016/j.envexpbot.2025.106241","DOIUrl":null,"url":null,"abstract":"<div><div>Non-structural carbohydrates (NSC) are critical indicators of the carbon acquisition and consumption balance in vascular plants, and are equally important for biological soil crusts (BSCs), which serve as significant carbon sinks in arid regions. Nitrogen (N) deposition significantly alters NSC storage by affecting plant growth, photosynthesis, and the carbon-to-nitrogen ratio. However, the response of NSC to N deposition may vary across different developmental stages of BSCs due to differences in physiological structures and soil properties. We conducted a long-term field N addition experiment (2010–2021) in the Gurbantunggut Desert, with N rates from 0 to 3 g m⁻² yr⁻¹ and a 2:1 NH₄⁺-N to NO₃⁻-N ratio, to examine the effects of N on NSC and their components (fructose, sucrose, soluble sugars, and starch) in three BSC types: cyanobacterial, lichen, and moss crusts. Our results revealed that the development of BSCs from cyanobacterial to lichen and moss crusts significantly alters NSC allocation, with an increasing ratio of soluble sugars to starch (0.24–1–1.68). As N added levels rise, NSC content in all three BSC types exhibits a nonlinear trend, characterized by low promotion and high inhibition, with distinct threshold points (N1.5-N0.5-N0.5). This phenomenon arises from shifts in the NSC driving factors under N addition: transitioning from soil nutrient dependence (cyanobacteria) to regulation by plant antioxidant enzyme activity (lichen), and ultimately to a more complex physiological regulation involving photosynthetic pigments and antioxidant enzyme activities (Moss). This study reveals the transition of BSCs from “environmental adapters” to “ecological regulators” throughout their successional stages. These findings provide new insights into the C metabolism of BSCs and have important implications for ecological restoration in N-impacted arid regions.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"238 ","pages":"Article 106241"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225001583","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Non-structural carbohydrates (NSC) are critical indicators of the carbon acquisition and consumption balance in vascular plants, and are equally important for biological soil crusts (BSCs), which serve as significant carbon sinks in arid regions. Nitrogen (N) deposition significantly alters NSC storage by affecting plant growth, photosynthesis, and the carbon-to-nitrogen ratio. However, the response of NSC to N deposition may vary across different developmental stages of BSCs due to differences in physiological structures and soil properties. We conducted a long-term field N addition experiment (2010–2021) in the Gurbantunggut Desert, with N rates from 0 to 3 g m⁻² yr⁻¹ and a 2:1 NH₄⁺-N to NO₃⁻-N ratio, to examine the effects of N on NSC and their components (fructose, sucrose, soluble sugars, and starch) in three BSC types: cyanobacterial, lichen, and moss crusts. Our results revealed that the development of BSCs from cyanobacterial to lichen and moss crusts significantly alters NSC allocation, with an increasing ratio of soluble sugars to starch (0.24–1–1.68). As N added levels rise, NSC content in all three BSC types exhibits a nonlinear trend, characterized by low promotion and high inhibition, with distinct threshold points (N1.5-N0.5-N0.5). This phenomenon arises from shifts in the NSC driving factors under N addition: transitioning from soil nutrient dependence (cyanobacteria) to regulation by plant antioxidant enzyme activity (lichen), and ultimately to a more complex physiological regulation involving photosynthetic pigments and antioxidant enzyme activities (Moss). This study reveals the transition of BSCs from “environmental adapters” to “ecological regulators” throughout their successional stages. These findings provide new insights into the C metabolism of BSCs and have important implications for ecological restoration in N-impacted arid regions.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.