{"title":"Agri-farming with computer vision, IoT and blockchain towards climate smart cultivation","authors":"Sajid Safeer , Pierluigi Gallo , Cataldo Pulvento","doi":"10.1016/j.iot.2025.101749","DOIUrl":null,"url":null,"abstract":"<div><div>Modern agriculture faces critical challenges such as climate change, food security and supply chain inefficiencies, which demand innovative solutions. Traditional farming systems often lack real time monitoring, data security and transparency, leading to wastefulness and quality concerns. To address these, we present a comprehensive precision agriculture framework that integrates Internet of Things (IoT) sensors, Raspberry Pi (R-Pi) edge computing, blockchain based data management and computer vision (CV) assisted statistical modeling. The system collects environmental data via a sensor network, processes it at the edge using R-Pi, and records summarized outputs on a secure Ethereum based blockchain using smart contracts. Simultaneously, CV modules perform real time quality assessment and anomaly detection. A Markov chain based stochastic model is employed to track quality degradation in high value crops. The methodology is validated through a saffron use case, demonstrating effectiveness in monitoring filament degradation and detecting potential fraud. This integration enhances real time decision making, ensures traceability and promotes sustainability in climate smart agriculture.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101749"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002628","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern agriculture faces critical challenges such as climate change, food security and supply chain inefficiencies, which demand innovative solutions. Traditional farming systems often lack real time monitoring, data security and transparency, leading to wastefulness and quality concerns. To address these, we present a comprehensive precision agriculture framework that integrates Internet of Things (IoT) sensors, Raspberry Pi (R-Pi) edge computing, blockchain based data management and computer vision (CV) assisted statistical modeling. The system collects environmental data via a sensor network, processes it at the edge using R-Pi, and records summarized outputs on a secure Ethereum based blockchain using smart contracts. Simultaneously, CV modules perform real time quality assessment and anomaly detection. A Markov chain based stochastic model is employed to track quality degradation in high value crops. The methodology is validated through a saffron use case, demonstrating effectiveness in monitoring filament degradation and detecting potential fraud. This integration enhances real time decision making, ensures traceability and promotes sustainability in climate smart agriculture.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.