{"title":"Electrochemical lateral flow assays: A new frontier for rapid and quantitative biosensing","authors":"Vernalyn Abarintos, Andrew Piper, Arben Merkoci","doi":"10.1016/j.coelec.2025.101750","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical lateral flow assays (eLFAs) have emerged as a promising alternative to traditional colorimetric LFAs, particularly for applications requiring quantitative readouts and improved sensitivity. Over the past two years, significant advancements have been made in eLFA design, fabrication, and analytical performance, positioning them as promising candidates for decentralized diagnostics and point-of-care (POC) testing. This review highlights recent advances in electrode integration techniques, redox-based signal amplification strategies, and the incorporation of wireless and battery-free electrochemical readout platforms. Multiplexed detection and real-time wireless data transmission have also been demonstrated, further increasing the utility of eLFAs in clinical and field settings. Additionally, innovative strategies to control contact pressure, optimize sample flow, and maintain device stability are being explored to improve reproducibility and usability. Despite these advancements, challenges remain, including biofouling, variability in sample matrices, and the need for standardized protocols across platforms.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"54 ","pages":"Article 101750"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325001097","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical lateral flow assays (eLFAs) have emerged as a promising alternative to traditional colorimetric LFAs, particularly for applications requiring quantitative readouts and improved sensitivity. Over the past two years, significant advancements have been made in eLFA design, fabrication, and analytical performance, positioning them as promising candidates for decentralized diagnostics and point-of-care (POC) testing. This review highlights recent advances in electrode integration techniques, redox-based signal amplification strategies, and the incorporation of wireless and battery-free electrochemical readout platforms. Multiplexed detection and real-time wireless data transmission have also been demonstrated, further increasing the utility of eLFAs in clinical and field settings. Additionally, innovative strategies to control contact pressure, optimize sample flow, and maintain device stability are being explored to improve reproducibility and usability. Despite these advancements, challenges remain, including biofouling, variability in sample matrices, and the need for standardized protocols across platforms.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •