A discourse on the use of machine learning (ML) in personality psychology: Can we expect ML to predict questionnaire scores from idiographic text-based data?

IF 3.1 2区 心理学 Q2 PSYCHOLOGY, SOCIAL
Marc Schreiber , Gregor J. Jenny , Manuela Hürlimann , Yuliya Parfenova , Pius von Däniken , Mark Cieliebak
{"title":"A discourse on the use of machine learning (ML) in personality psychology: Can we expect ML to predict questionnaire scores from idiographic text-based data?","authors":"Marc Schreiber ,&nbsp;Gregor J. Jenny ,&nbsp;Manuela Hürlimann ,&nbsp;Yuliya Parfenova ,&nbsp;Pius von Däniken ,&nbsp;Mark Cieliebak","doi":"10.1016/j.jrp.2025.104666","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores Machine Learning’s (ML) potential to predict motives and personality dispositions from text-based data, aligning with McAdams’ framework on layers of personality. ML-predicted scores demonstrated no significant advantage over a baseline model that consistently predicted the median of the motives or personality dispositions. Possible factors discussed include unmet ML algorithm requirements, unsuitability of collected texts for predicting motives and dispositions, and ML’s limitations in capturing contextualized and implicit aspects of personality. We discuss life narrative research and practice in relation to the nomothetic-idiographic debate and advocate for personality research to incorporate context-specificity and idiosyncrasy. From a social constructionist perspective, we envision future research – though not yet practice – on counselling processes delivered or supported by Generative AI (GenAI).</div></div>","PeriodicalId":48406,"journal":{"name":"Journal of Research in Personality","volume":"119 ","pages":"Article 104666"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Personality","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0092656625000984","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, SOCIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores Machine Learning’s (ML) potential to predict motives and personality dispositions from text-based data, aligning with McAdams’ framework on layers of personality. ML-predicted scores demonstrated no significant advantage over a baseline model that consistently predicted the median of the motives or personality dispositions. Possible factors discussed include unmet ML algorithm requirements, unsuitability of collected texts for predicting motives and dispositions, and ML’s limitations in capturing contextualized and implicit aspects of personality. We discuss life narrative research and practice in relation to the nomothetic-idiographic debate and advocate for personality research to incorporate context-specificity and idiosyncrasy. From a social constructionist perspective, we envision future research – though not yet practice – on counselling processes delivered or supported by Generative AI (GenAI).
关于机器学习(ML)在人格心理学中的应用的论述:我们能指望机器学习从具体的基于文本的数据中预测问卷得分吗?
本文探讨了机器学习(ML)从基于文本的数据中预测动机和个性倾向的潜力,与McAdams关于个性层次的框架保持一致。机器学习预测的分数与基线模型相比没有明显的优势,而基线模型一直预测动机或人格倾向的中位数。讨论的可能因素包括未满足ML算法要求,收集的文本不适合预测动机和性格,以及ML在捕获情境化和隐性人格方面的局限性。我们将生活叙事的研究与实践与本体论-具体论的争论联系起来讨论,并提倡将情境特异性和特质性结合起来进行人格研究。从社会建构主义的角度来看,我们设想了未来的研究——尽管还没有实践——关于由生成人工智能(GenAI)提供或支持的咨询过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
6.10%
发文量
102
审稿时长
67 days
期刊介绍: Emphasizing experimental and descriptive research, the Journal of Research in Personality presents articles that examine important issues in the field of personality and in related fields basic to the understanding of personality. The subject matter includes treatments of genetic, physiological, motivational, learning, perceptual, cognitive, and social processes of both normal and abnormal kinds in human and animal subjects. Features: • Papers that present integrated sets of studies that address significant theoretical issues relating to personality. • Theoretical papers and critical reviews of current experimental and methodological interest. • Single, well-designed studies of an innovative nature. • Brief reports, including replication or null result studies of previously reported findings, or a well-designed studies addressing questions of limited scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信