{"title":"Non-vanishing of a certain quantity related to the p-adic coupling of mock modular forms with newforms","authors":"Pavel Guerzhoy","doi":"10.1016/j.jnt.2025.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Several authors have recently proved results which express a cusp form as a <em>p</em>-adic limit of weakly holomorphic modular forms under repeated application of Atkin's <em>U</em>-operator. Initially, these results had a deficiency: one could not rule out the possibility when a certain quantity vanishes and the final result fails to be true. Later on, Ahlgren and Samart <span><span>[1]</span></span> found a method to prove the non-vanishing in question in the specific case considered by El-Guindy and Ono <span><span>[10]</span></span>. Hanson and Jameson <span><span>[15]</span></span> and (independently) Dicks <span><span>[8]</span></span> generalized this method to finitely many other cases.</div><div>In this paper, we present a different approach which allows us to prove a similar non-vanishing result for an infinite family of similar cases. Our approach also allows us to return back to the original example considered by El-Guindy and Ono <span><span>[10]</span></span>, where we calculate the (manifestly non-zero) quantity explicitly in terms of Morita's <em>p</em>-adic Γ-function.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 191-211"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002288","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Several authors have recently proved results which express a cusp form as a p-adic limit of weakly holomorphic modular forms under repeated application of Atkin's U-operator. Initially, these results had a deficiency: one could not rule out the possibility when a certain quantity vanishes and the final result fails to be true. Later on, Ahlgren and Samart [1] found a method to prove the non-vanishing in question in the specific case considered by El-Guindy and Ono [10]. Hanson and Jameson [15] and (independently) Dicks [8] generalized this method to finitely many other cases.
In this paper, we present a different approach which allows us to prove a similar non-vanishing result for an infinite family of similar cases. Our approach also allows us to return back to the original example considered by El-Guindy and Ono [10], where we calculate the (manifestly non-zero) quantity explicitly in terms of Morita's p-adic Γ-function.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.