Bounds on the number of squares in recurrence sequences: y0 = b2 (I)

IF 0.7 3区 数学 Q3 MATHEMATICS
Paul M. Voutier
{"title":"Bounds on the number of squares in recurrence sequences: y0 = b2 (I)","authors":"Paul M. Voutier","doi":"10.1016/j.jnt.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>We continue and generalise our earlier investigations of the number of squares in binary recurrence sequences. Here we consider sequences, <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mo>∞</mo></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, arising from the solutions of generalised negative Pell equations, <span><math><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>d</mi><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>c</mi></math></span>, where −<em>c</em> and <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are any positive squares. We show that there are at most 2 distinct squares larger than an explicit lower bound in such sequences. From this result, we also show that there are at most 5 distinct squares when <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for infinitely many values of <em>b</em>, including all <span><math><mn>1</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>24</mn></math></span>, as well as once <em>d</em> exceeds an explicit lower bound, without any conditions on the size of such squares.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 246-270"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002239","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue and generalise our earlier investigations of the number of squares in binary recurrence sequences. Here we consider sequences, (yk)k=, arising from the solutions of generalised negative Pell equations, X2dY2=c, where −c and y0 are any positive squares. We show that there are at most 2 distinct squares larger than an explicit lower bound in such sequences. From this result, we also show that there are at most 5 distinct squares when y0=b2 for infinitely many values of b, including all 1b24, as well as once d exceeds an explicit lower bound, without any conditions on the size of such squares.
递归序列中平方数的界限:y0 = b2 (I)
我们继续并推广了先前关于二值递归序列中平方数的研究。这里我们考虑由广义负Pell方程X2 - dY2=c的解引起的序列(yk)k=−∞∞,其中−c和y0是任意正平方。我们证明了在这样的数列中,最多有两个不同的大于显下界的平方。由这个结果,我们还证明了当y0=b2时,当b的无穷多个值,包括所有1≤b≤24,以及当d超过一个显式下界时,不需要对这种正方形的大小有任何条件,最多有5个不同的正方形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信