{"title":"Bounds on the number of squares in recurrence sequences: y0 = b2 (I)","authors":"Paul M. Voutier","doi":"10.1016/j.jnt.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>We continue and generalise our earlier investigations of the number of squares in binary recurrence sequences. Here we consider sequences, <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mo>∞</mo></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, arising from the solutions of generalised negative Pell equations, <span><math><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>d</mi><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>c</mi></math></span>, where −<em>c</em> and <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are any positive squares. We show that there are at most 2 distinct squares larger than an explicit lower bound in such sequences. From this result, we also show that there are at most 5 distinct squares when <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for infinitely many values of <em>b</em>, including all <span><math><mn>1</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>24</mn></math></span>, as well as once <em>d</em> exceeds an explicit lower bound, without any conditions on the size of such squares.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 246-270"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002239","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We continue and generalise our earlier investigations of the number of squares in binary recurrence sequences. Here we consider sequences, , arising from the solutions of generalised negative Pell equations, , where −c and are any positive squares. We show that there are at most 2 distinct squares larger than an explicit lower bound in such sequences. From this result, we also show that there are at most 5 distinct squares when for infinitely many values of b, including all , as well as once d exceeds an explicit lower bound, without any conditions on the size of such squares.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.