Systematic development of an equivalent particle method for efficient simulation of dense granular flows

IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yilong Liu , Xiping Yu
{"title":"Systematic development of an equivalent particle method for efficient simulation of dense granular flows","authors":"Yilong Liu ,&nbsp;Xiping Yu","doi":"10.1016/j.cpc.2025.109862","DOIUrl":null,"url":null,"abstract":"<div><div>Development of a highly efficient model is very important to expand the applicability of discrete element method (DEM) to large-scale granular flows that often include a tremendous number of granular particles. An equivalent particle method is rigorously developed for such a purpose in this study. The kinetic theory for granular flows is taken advantage to understand the relationship between the original particle system and the equivalent particle system, with a focus on conservation of mass and momentum. With the newly established equivalent particle method, the averaged particle velocity, density and volume concentration remain the same as in the original system. Scaling factors for other physical quantities, particularly those describing particle contact processes, are introduced to satisfy the geometric, kinematic and dynamic similarities. Verification of the equivalent particle model are performed by applying it to the computation of granular collapses on both horizontal and inclined bottoms. The computational results on deformation of granular profiles show that existing coarse grain or representative particle models, which were developed for the similar purpose as the present equivalent particle model, underestimate the granular material’s mobility. The numerical results from the present model agree much better with experimental data, indicating a major advancement in this kind of model development. The efficiency is drastically improved by tremendously reducing the number of computed particles, as compared to the standard DEM model.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"317 ","pages":"Article 109862"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003649","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Development of a highly efficient model is very important to expand the applicability of discrete element method (DEM) to large-scale granular flows that often include a tremendous number of granular particles. An equivalent particle method is rigorously developed for such a purpose in this study. The kinetic theory for granular flows is taken advantage to understand the relationship between the original particle system and the equivalent particle system, with a focus on conservation of mass and momentum. With the newly established equivalent particle method, the averaged particle velocity, density and volume concentration remain the same as in the original system. Scaling factors for other physical quantities, particularly those describing particle contact processes, are introduced to satisfy the geometric, kinematic and dynamic similarities. Verification of the equivalent particle model are performed by applying it to the computation of granular collapses on both horizontal and inclined bottoms. The computational results on deformation of granular profiles show that existing coarse grain or representative particle models, which were developed for the similar purpose as the present equivalent particle model, underestimate the granular material’s mobility. The numerical results from the present model agree much better with experimental data, indicating a major advancement in this kind of model development. The efficiency is drastically improved by tremendously reducing the number of computed particles, as compared to the standard DEM model.
系统地发展了一种有效模拟密集颗粒流的等效颗粒方法
建立一个高效的模型对于扩大离散元法(DEM)在包含大量颗粒的大尺度颗粒流中的适用性是非常重要的。为此,本研究严格发展了等效粒子法。利用颗粒流动的动力学理论来理解原始粒子系统和等效粒子系统之间的关系,重点关注质量和动量守恒。采用新建立的等效粒子法,平均粒子速度、密度和体积浓度与原体系保持一致。引入其他物理量的比例因子,特别是描述粒子接触过程的比例因子,以满足几何、运动学和动力学的相似性。将等效颗粒模型应用于水平和倾斜底部的颗粒垮塌计算,对等效颗粒模型进行了验证。颗粒变形的计算结果表明,现有的与等效颗粒模型相似的粗粒或代表性颗粒模型低估了颗粒材料的迁移率。该模型的数值结果与实验数据吻合较好,表明该模型的发展取得了重大进展。与标准DEM模型相比,通过大大减少计算粒子的数量,效率大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信