David Wawrzyniak , Josef Winter , Steffen Schmidt , Thomas Indinger , Christian F. Janßen , Uwe Schramm , Nikolaus A. Adams
{"title":"Linearized quantum lattice-Boltzmann method for the advection-diffusion equation using dynamic circuits","authors":"David Wawrzyniak , Josef Winter , Steffen Schmidt , Thomas Indinger , Christian F. Janßen , Uwe Schramm , Nikolaus A. Adams","doi":"10.1016/j.cpc.2025.109856","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a quantum algorithm for the linear advection-diffusion equation (ADE) Lattice-Boltzmann method (LBM) that leverages dynamic circuits. Dynamic quantum circuits allow for an optimized quantum collision operator algorithm by incorporating partial measurements as an integral step. The quantum circuit efficiently adapts during execution based on digital information obtained via mid-circuit measurements.</div><div>The proposed new collision algorithm is implemented as a fully unitary operator, which facilitates the computation of multiple time steps without state reinitialization. Unlike previous quantum collision operators that rely on linear combinations of unitaries, the proposed algorithm does not exhibit a probabilistic failure rate. Our proposed algorithm embeds no more than two distribution functions simultaneously within the quantum state, irrespective of the velocity set. Compared to previous quantum algorithms, this approach reduces both the qubit overhead and circuit complexity required to execute the collision operator and encode the distributions.</div><div>The quantum collision algorithm is validated against classical LBM simulations in 1D and 2D, showing excellent agreement. Performance analysis over multiple time steps highlights advantages of the proposed method compared to previous methods.</div><div>As an additional variant, a hybrid quantum-digital approach is proposed, which reduces the number of mid-circuit measurements, thus improving the efficiency of the quantum collision algorithm.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"317 ","pages":"Article 109856"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003583","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a quantum algorithm for the linear advection-diffusion equation (ADE) Lattice-Boltzmann method (LBM) that leverages dynamic circuits. Dynamic quantum circuits allow for an optimized quantum collision operator algorithm by incorporating partial measurements as an integral step. The quantum circuit efficiently adapts during execution based on digital information obtained via mid-circuit measurements.
The proposed new collision algorithm is implemented as a fully unitary operator, which facilitates the computation of multiple time steps without state reinitialization. Unlike previous quantum collision operators that rely on linear combinations of unitaries, the proposed algorithm does not exhibit a probabilistic failure rate. Our proposed algorithm embeds no more than two distribution functions simultaneously within the quantum state, irrespective of the velocity set. Compared to previous quantum algorithms, this approach reduces both the qubit overhead and circuit complexity required to execute the collision operator and encode the distributions.
The quantum collision algorithm is validated against classical LBM simulations in 1D and 2D, showing excellent agreement. Performance analysis over multiple time steps highlights advantages of the proposed method compared to previous methods.
As an additional variant, a hybrid quantum-digital approach is proposed, which reduces the number of mid-circuit measurements, thus improving the efficiency of the quantum collision algorithm.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.