Speeding up fermionic lattice calculations with photonic accelerated inverters

IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Felipe Attanasio , Marc Bauer , Jelle Dijkstra , Timoteo Lee , Jan M. Pawlowski , Wolfram Pernice , Frank Brückerhoff-Plückelmann
{"title":"Speeding up fermionic lattice calculations with photonic accelerated inverters","authors":"Felipe Attanasio ,&nbsp;Marc Bauer ,&nbsp;Jelle Dijkstra ,&nbsp;Timoteo Lee ,&nbsp;Jan M. Pawlowski ,&nbsp;Wolfram Pernice ,&nbsp;Frank Brückerhoff-Plückelmann","doi":"10.1016/j.cpc.2025.109825","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice field theory (LFT) is the standard non-perturbative method to perform numerical calculations of quantum field theory. However, the typical bottleneck of fermionic lattice calculations is the inversion of the Dirac matrix. This inversion is solved by iterative methods, like the conjugate gradient algorithm, where matrix-vector multiplications (MVMs) are the main operation. Photonic integrated circuits excel in performing quick and energy-efficient MVMs, but at the same time, they are known to have low accuracy. This can be overcome by using mixed precision methods. In this paper, we explore the idea of using photonic technology to fulfil the demand for computational power of fermionic lattice calculations. These methods have the potential to reduce computation costs by one order of magnitude. Because of the hybrid nature of these methods, we call these ‘photonic accelerated inverters (PAIs)’.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"317 ","pages":"Article 109825"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003273","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice field theory (LFT) is the standard non-perturbative method to perform numerical calculations of quantum field theory. However, the typical bottleneck of fermionic lattice calculations is the inversion of the Dirac matrix. This inversion is solved by iterative methods, like the conjugate gradient algorithm, where matrix-vector multiplications (MVMs) are the main operation. Photonic integrated circuits excel in performing quick and energy-efficient MVMs, but at the same time, they are known to have low accuracy. This can be overcome by using mixed precision methods. In this paper, we explore the idea of using photonic technology to fulfil the demand for computational power of fermionic lattice calculations. These methods have the potential to reduce computation costs by one order of magnitude. Because of the hybrid nature of these methods, we call these ‘photonic accelerated inverters (PAIs)’.
用光子加速逆变器加速费米子晶格计算
点阵场论(LFT)是量子场论数值计算的标准非微扰方法。然而,费米子晶格计算的典型瓶颈是狄拉克矩阵的反演。这种反演是通过迭代方法来解决的,比如共轭梯度算法,其中矩阵向量乘法(MVMs)是主要的操作。光子集成电路在执行快速和节能的mvm方面表现出色,但与此同时,它们的精度也很低。这可以通过使用混合精度方法来克服。本文探讨了利用光子技术来满足费米子晶格计算对计算能力的要求。这些方法有可能将计算成本降低一个数量级。由于这些方法的混合性质,我们称之为“光子加速逆变器(PAIs)”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信