Andrey S. Zubov , Yan A. Malyavko , Marina V. Karsanina , Nikolay D. Kondratyuk , Kirill M. Gerke
{"title":"PARSE: Physical attribute representativity and stationarity evaluator open-source library for 3D images using scalar and vector metrics","authors":"Andrey S. Zubov , Yan A. Malyavko , Marina V. Karsanina , Nikolay D. Kondratyuk , Kirill M. Gerke","doi":"10.1016/j.cpc.2025.109860","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of representative volume (REV, or RVE in material sciences) is the cornerstone of continuum scale models – one needs to get the volume big enough so that it could be represented with an averaged value (scalar, vector or tensorial, etc.). While REV should be established in all larger scale simulations, this is rarely done in practice despite widespread adoption of 3D imaging devices in all research areas starting from petroleum engineering, material sciences and spanning to biology. Sometimes REV analysis is performed in the form of very simple procedures, such as a check for convergence of porosity or surface area, which is technically identical to omitting it entirely. The main reason for this to happen is the poor understanding of REV concept in general (mainly its connection to spatial stationarity and necessity for vector metrics with high information content) and unavailability of open-source robust solutions. In this work we present <figure><img></figure> library that solves exactly this problem – we developed an easy to use and well-documented code based on rigorous research carried out recently in explaining the “dark sides” of representativity. In addition to REV, our code allows spatial stationarity analysis and comparison of samples (with subsequent clusterization into different groups) based on vector metrics – correlation functions, persistence diagrams and pore-network statistics, that altogether possess high information content which is critical in establishing stationarity and REV. We test our library on images produced by known statistical processes, such as Poisson spheres. After verification, we show how to compare different samples and group them depending on their “structural DNA”. All solutions explained in the paper are represented by Jupiter notebooks that can be used to perform similar analysis, moreover, the class structure of <figure><img></figure> library allows painless modifications to be implemented. We believe that such an open-source library will be useful in numerous fields and will become an invaluable tool for 3D image analysis.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"317 ","pages":"Article 109860"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of representative volume (REV, or RVE in material sciences) is the cornerstone of continuum scale models – one needs to get the volume big enough so that it could be represented with an averaged value (scalar, vector or tensorial, etc.). While REV should be established in all larger scale simulations, this is rarely done in practice despite widespread adoption of 3D imaging devices in all research areas starting from petroleum engineering, material sciences and spanning to biology. Sometimes REV analysis is performed in the form of very simple procedures, such as a check for convergence of porosity or surface area, which is technically identical to omitting it entirely. The main reason for this to happen is the poor understanding of REV concept in general (mainly its connection to spatial stationarity and necessity for vector metrics with high information content) and unavailability of open-source robust solutions. In this work we present library that solves exactly this problem – we developed an easy to use and well-documented code based on rigorous research carried out recently in explaining the “dark sides” of representativity. In addition to REV, our code allows spatial stationarity analysis and comparison of samples (with subsequent clusterization into different groups) based on vector metrics – correlation functions, persistence diagrams and pore-network statistics, that altogether possess high information content which is critical in establishing stationarity and REV. We test our library on images produced by known statistical processes, such as Poisson spheres. After verification, we show how to compare different samples and group them depending on their “structural DNA”. All solutions explained in the paper are represented by Jupiter notebooks that can be used to perform similar analysis, moreover, the class structure of library allows painless modifications to be implemented. We believe that such an open-source library will be useful in numerous fields and will become an invaluable tool for 3D image analysis.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.