Hydrochar-derived activated carbon from chenopodium botrys for dual applications in dye removal and energy storage

IF 5.1 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Selma Ekinci , Erhan Onat , Abdulkadir Levent , Ramazan Astan
{"title":"Hydrochar-derived activated carbon from chenopodium botrys for dual applications in dye removal and energy storage","authors":"Selma Ekinci ,&nbsp;Erhan Onat ,&nbsp;Abdulkadir Levent ,&nbsp;Ramazan Astan","doi":"10.1016/j.diamond.2025.112834","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports the synthesis of activated carbon from <em>Chenopodium botrys</em> biomass through two approaches: direct chemical activation (Cb-AC) and a two-step route involving hydrothermal pretreatment followed by chemical activation (Cb-HC-AC). Structural characterization confirmed that hydrothermal pretreatment introduced abundant oxygen functional groups and facilitated mesopore development. In methylene blue (MB) adsorption experiments, Cb-HC-AC exhibited a maximum capacity of 140.83 mg/g, significantly higher than that of Cb-AC (77.15 mg/g). Adsorption kinetics followed a pseudo-second-order model, while isotherm and thermodynamic analyses revealed that adsorption on Cb-HC-AC was endothermic and entropy-driven, in contrast to the exothermic behavior of Cb-AC. Furthermore, Cb-HC-AC demonstrated excellent electrochemical performance as a supercapacitor electrode, achieving a specific capacitance of 441 F/g at 0.2 A/g, 93 % retention after 5000 cycles, and an energy density of 16.94 Wh/kg. These results introduce <em>C. botrys</em> as a novel, sustainable precursor for multifunctional activated carbon and highlight the critical role of hydrothermal pretreatment followed by chemical activation in enhancing both adsorption and energy storage applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112834"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352500891X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the synthesis of activated carbon from Chenopodium botrys biomass through two approaches: direct chemical activation (Cb-AC) and a two-step route involving hydrothermal pretreatment followed by chemical activation (Cb-HC-AC). Structural characterization confirmed that hydrothermal pretreatment introduced abundant oxygen functional groups and facilitated mesopore development. In methylene blue (MB) adsorption experiments, Cb-HC-AC exhibited a maximum capacity of 140.83 mg/g, significantly higher than that of Cb-AC (77.15 mg/g). Adsorption kinetics followed a pseudo-second-order model, while isotherm and thermodynamic analyses revealed that adsorption on Cb-HC-AC was endothermic and entropy-driven, in contrast to the exothermic behavior of Cb-AC. Furthermore, Cb-HC-AC demonstrated excellent electrochemical performance as a supercapacitor electrode, achieving a specific capacitance of 441 F/g at 0.2 A/g, 93 % retention after 5000 cycles, and an energy density of 16.94 Wh/kg. These results introduce C. botrys as a novel, sustainable precursor for multifunctional activated carbon and highlight the critical role of hydrothermal pretreatment followed by chemical activation in enhancing both adsorption and energy storage applications.

Abstract Image

从chenopodium瓶中提取的氢衍生活性炭在染料去除和能量储存方面的双重应用
本研究报道了Chenopodium botrys生物质合成活性炭的两种途径:直接化学活化(Cb-AC)和水热预处理-化学活化(Cb-HC-AC)两步法。结构表征证实了水热预处理引入了丰富的氧官能团,促进了介孔的发育。在亚甲基蓝(MB)吸附实验中,Cb-HC-AC的最大吸附量为140.83 mg/g,显著高于Cb-AC的77.15 mg/g。吸附动力学遵循准二阶模型,等温线和热力学分析表明,与Cb-AC的放热行为相反,Cb-HC-AC的吸附是吸热和熵驱动的。此外,Cb-HC-AC作为超级电容器电极表现出优异的电化学性能,在0.2 a /g时达到441 F/g的比电容,循环5000次后保持率为93%,能量密度为16.94 Wh/kg。这些研究结果介绍了C. botrys作为一种新型的、可持续的多功能活性炭前体,并强调了水热预处理和化学活化在增强吸附和储能应用方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信