Nazifa Zaman Khan , S. Manjura Hoque , Harinarayan Das , Arup Kumar , Rafiqul Islam , Mozammal Hossain
{"title":"Remineralization of demineralized teeth enamel with nHAp and nHAp-NaF-PEO nanocomposite","authors":"Nazifa Zaman Khan , S. Manjura Hoque , Harinarayan Das , Arup Kumar , Rafiqul Islam , Mozammal Hossain","doi":"10.1016/j.bea.2025.100192","DOIUrl":null,"url":null,"abstract":"<div><div>Teeth enamel, composed of calcium and phosphorus, becomes demineralized in contact with beverages and food. The essential component of teeth, enamel, can be remineralized with the use of nano-hydroxyapatite (nHAp) alone or in a solution consisting of nHAp, sodium fluoride (NaF), and polyethylene oxide (PEO) nanocomposite. We divided ten sound-extracted teeth into two groups: Group A consisted of three teeth treated with nHAp colloids, while Group B consisted of seven teeth treated with nHAp-NaF-PEO nanocomposite in solution. We demineralized the teeth of both groups by soaking them in various pH-adjusted demineralizing agents for different periods. We analyzed the morphology and composition of the demineralized teeth by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The teeth specimens were brushed two times/day for about 2 minutes each, with a 12-hours interval between brushing sessions, to remineralize them over four weeks. Periodically, the enamel specimens were placed in distilled water and maintained at 37° C in the CO<sub>2</sub> incubator. We analyzed the morphology and composition of the remineralized teeth by SEM and EDAX. The results show that the surface morphology produced by the nHAp-NaF-PEO nanocomposite solution was quite similar to the baseline enamel morphology. We observed an increase in mineral content, namely the Ca/P ratio, in the nHAp-NaF- PEO nanocomposite solution. The nHAp-NaF-PEO nanocomposite solution aids the remineralization of the decayed teeth more effectively than nHAp singly and heals carious lesions. Both nHAp and nHAp-NaF-PEO heals the morphology of carious teeth.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"10 ","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099225000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Teeth enamel, composed of calcium and phosphorus, becomes demineralized in contact with beverages and food. The essential component of teeth, enamel, can be remineralized with the use of nano-hydroxyapatite (nHAp) alone or in a solution consisting of nHAp, sodium fluoride (NaF), and polyethylene oxide (PEO) nanocomposite. We divided ten sound-extracted teeth into two groups: Group A consisted of three teeth treated with nHAp colloids, while Group B consisted of seven teeth treated with nHAp-NaF-PEO nanocomposite in solution. We demineralized the teeth of both groups by soaking them in various pH-adjusted demineralizing agents for different periods. We analyzed the morphology and composition of the demineralized teeth by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The teeth specimens were brushed two times/day for about 2 minutes each, with a 12-hours interval between brushing sessions, to remineralize them over four weeks. Periodically, the enamel specimens were placed in distilled water and maintained at 37° C in the CO2 incubator. We analyzed the morphology and composition of the remineralized teeth by SEM and EDAX. The results show that the surface morphology produced by the nHAp-NaF-PEO nanocomposite solution was quite similar to the baseline enamel morphology. We observed an increase in mineral content, namely the Ca/P ratio, in the nHAp-NaF- PEO nanocomposite solution. The nHAp-NaF-PEO nanocomposite solution aids the remineralization of the decayed teeth more effectively than nHAp singly and heals carious lesions. Both nHAp and nHAp-NaF-PEO heals the morphology of carious teeth.