Aarthi Kannan , Daniel West , Dinesh Kumbhare , Wei-Ting Ting , Md. Younus Ali , Hameem I. Kawsar , Gurmit Singh , Harsha Shanthanna , Eleni Hapidou , Matiar M.R. Howlader
{"title":"An analytical review of biosensor-based chronic pain quantification in healthcare","authors":"Aarthi Kannan , Daniel West , Dinesh Kumbhare , Wei-Ting Ting , Md. Younus Ali , Hameem I. Kawsar , Gurmit Singh , Harsha Shanthanna , Eleni Hapidou , Matiar M.R. Howlader","doi":"10.1016/j.health.2025.100419","DOIUrl":null,"url":null,"abstract":"<div><div>Current clinical methods for chronic pain assessment lack objective, quantitative measures, creating a critical gap in diagnostic accuracy. This review investigates the relationship between chronic pain and key biomarkers detectable in body fluids, such as glutamate, interleukin-6, nitric oxide, and quinolinic acid. We first discuss the biological mechanisms underlying chronic pain and evaluate the relevance of these biomarkers. The review then focuses on recent advancements in non-enzymatic electrochemical biosensors used to monitor these biomarkers. For each sensor, we summarize performance metrics including sensitivity, detection limits, and linear range, while highlighting the analytical methodologies used to establish correlations between biomarker levels and pain intensity. Our findings demonstrate that quantitative analysis of biomarker fluctuations can enhance chronic pain monitoring. The integration of sensor-based biomarker analytics with clinical workflows may offer a path toward personalized treatment plans and improved decision-making in healthcare supply chains. This review emphasizes the need for continued development of high-precision biosensors as analytical tools for translating physiological signals into clinically actionable pain metrics.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100419"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current clinical methods for chronic pain assessment lack objective, quantitative measures, creating a critical gap in diagnostic accuracy. This review investigates the relationship between chronic pain and key biomarkers detectable in body fluids, such as glutamate, interleukin-6, nitric oxide, and quinolinic acid. We first discuss the biological mechanisms underlying chronic pain and evaluate the relevance of these biomarkers. The review then focuses on recent advancements in non-enzymatic electrochemical biosensors used to monitor these biomarkers. For each sensor, we summarize performance metrics including sensitivity, detection limits, and linear range, while highlighting the analytical methodologies used to establish correlations between biomarker levels and pain intensity. Our findings demonstrate that quantitative analysis of biomarker fluctuations can enhance chronic pain monitoring. The integration of sensor-based biomarker analytics with clinical workflows may offer a path toward personalized treatment plans and improved decision-making in healthcare supply chains. This review emphasizes the need for continued development of high-precision biosensors as analytical tools for translating physiological signals into clinically actionable pain metrics.