An analytical review of biosensor-based chronic pain quantification in healthcare

Aarthi Kannan , Daniel West , Dinesh Kumbhare , Wei-Ting Ting , Md. Younus Ali , Hameem I. Kawsar , Gurmit Singh , Harsha Shanthanna , Eleni Hapidou , Matiar M.R. Howlader
{"title":"An analytical review of biosensor-based chronic pain quantification in healthcare","authors":"Aarthi Kannan ,&nbsp;Daniel West ,&nbsp;Dinesh Kumbhare ,&nbsp;Wei-Ting Ting ,&nbsp;Md. Younus Ali ,&nbsp;Hameem I. Kawsar ,&nbsp;Gurmit Singh ,&nbsp;Harsha Shanthanna ,&nbsp;Eleni Hapidou ,&nbsp;Matiar M.R. Howlader","doi":"10.1016/j.health.2025.100419","DOIUrl":null,"url":null,"abstract":"<div><div>Current clinical methods for chronic pain assessment lack objective, quantitative measures, creating a critical gap in diagnostic accuracy. This review investigates the relationship between chronic pain and key biomarkers detectable in body fluids, such as glutamate, interleukin-6, nitric oxide, and quinolinic acid. We first discuss the biological mechanisms underlying chronic pain and evaluate the relevance of these biomarkers. The review then focuses on recent advancements in non-enzymatic electrochemical biosensors used to monitor these biomarkers. For each sensor, we summarize performance metrics including sensitivity, detection limits, and linear range, while highlighting the analytical methodologies used to establish correlations between biomarker levels and pain intensity. Our findings demonstrate that quantitative analysis of biomarker fluctuations can enhance chronic pain monitoring. The integration of sensor-based biomarker analytics with clinical workflows may offer a path toward personalized treatment plans and improved decision-making in healthcare supply chains. This review emphasizes the need for continued development of high-precision biosensors as analytical tools for translating physiological signals into clinically actionable pain metrics.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100419"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current clinical methods for chronic pain assessment lack objective, quantitative measures, creating a critical gap in diagnostic accuracy. This review investigates the relationship between chronic pain and key biomarkers detectable in body fluids, such as glutamate, interleukin-6, nitric oxide, and quinolinic acid. We first discuss the biological mechanisms underlying chronic pain and evaluate the relevance of these biomarkers. The review then focuses on recent advancements in non-enzymatic electrochemical biosensors used to monitor these biomarkers. For each sensor, we summarize performance metrics including sensitivity, detection limits, and linear range, while highlighting the analytical methodologies used to establish correlations between biomarker levels and pain intensity. Our findings demonstrate that quantitative analysis of biomarker fluctuations can enhance chronic pain monitoring. The integration of sensor-based biomarker analytics with clinical workflows may offer a path toward personalized treatment plans and improved decision-making in healthcare supply chains. This review emphasizes the need for continued development of high-precision biosensors as analytical tools for translating physiological signals into clinically actionable pain metrics.

Abstract Image

医疗保健中基于生物传感器的慢性疼痛量化分析综述
目前的临床方法慢性疼痛评估缺乏客观,定量的措施,造成诊断准确性的关键差距。本文综述了慢性疼痛与体液中可检测的关键生物标志物,如谷氨酸、白细胞介素-6、一氧化氮和喹啉酸之间的关系。我们首先讨论了慢性疼痛的生物学机制,并评估了这些生物标志物的相关性。然后综述了用于监测这些生物标志物的非酶电化学生物传感器的最新进展。对于每个传感器,我们总结了性能指标,包括灵敏度、检测限和线性范围,同时强调了用于建立生物标志物水平和疼痛强度之间相关性的分析方法。我们的研究结果表明,生物标志物波动的定量分析可以加强慢性疼痛监测。基于传感器的生物标志物分析与临床工作流程的集成可能为个性化治疗计划和改善医疗保健供应链的决策提供途径。这篇综述强调需要继续发展高精度的生物传感器作为分析工具,将生理信号转化为临床可操作的疼痛指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信