{"title":"On the generalized Fourier transform for the modified Hunter-Saxton equation","authors":"Miao-Miao Xie, Shou-Fu Tian, Xing-Jie Yan","doi":"10.1016/j.geomphys.2025.105647","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, by the squared eigenfunctions of the spectral problem for the modified Hunter-Saxton equation, we derive the generalized Fourier transform and the symplectic basis for the equation. First, we present the symmetry and the asymptotic behavior of the Jost solutions and the scattering data from the inverse scattering transform. Then the completeness relations of the Jost solutions and the squared eigenfunctions are derived by constructing two meromorphic functions, from which we can derive the generalized Fourier transform. Finally, we verified that a set of variables defined by the scattering data and the squared eigenfunctions form the symplectic basis of the phase space, which gives the description in symplectic geometry for the modified Hunter-Saxton equation.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105647"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, by the squared eigenfunctions of the spectral problem for the modified Hunter-Saxton equation, we derive the generalized Fourier transform and the symplectic basis for the equation. First, we present the symmetry and the asymptotic behavior of the Jost solutions and the scattering data from the inverse scattering transform. Then the completeness relations of the Jost solutions and the squared eigenfunctions are derived by constructing two meromorphic functions, from which we can derive the generalized Fourier transform. Finally, we verified that a set of variables defined by the scattering data and the squared eigenfunctions form the symplectic basis of the phase space, which gives the description in symplectic geometry for the modified Hunter-Saxton equation.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity