Extended hydrogen frameworks in nonmetallic superhydrides enabling 190 K superconductivity

IF 6.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiuyue Li , Shuai Han , Xiaohua Zhang , Shicong Ding , Aitor Bergara , Guochun Yang
{"title":"Extended hydrogen frameworks in nonmetallic superhydrides enabling 190 K superconductivity","authors":"Qiuyue Li ,&nbsp;Shuai Han ,&nbsp;Xiaohua Zhang ,&nbsp;Shicong Ding ,&nbsp;Aitor Bergara ,&nbsp;Guochun Yang","doi":"10.1016/j.supcon.2025.100196","DOIUrl":null,"url":null,"abstract":"<div><div>Extended hydrogen-rich frameworks stabilized under high pressure are essential for achieving high-temperature superconductivity in metal hydrides, where metal atoms contribute both charge and intrinsic precompression. In contrast, <em>p</em>-block nonmetal hydrides lack such extended hydrogenic connectivity. Here, using first-principles crystal structure search calculations, we identify three nitrogen-based superhydrides—NH<sub>10</sub>, NH<sub>11</sub>, and NH<sub>12</sub>—each featuring a unique extended H sublattice: corrugated graphene-like hydrogen layers in NH<sub>10</sub>, planar H<span><math><msub><mrow></mrow><mrow><mn>16</mn></mrow></msub></math></span>-ring sheets in NH<sub>11</sub>, and a fully three-dimensional, densely connected H framework in NH<sub>12</sub>. These structures are stabilized by <span><math><msup><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>+</mo></mrow></msup></math></span> units, which donate charge in a manner analogous to metal atoms in conventional metal superhydrides. Remarkably, NH<sub>10</sub> exhibits a superconducting critical temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) of 190<!--> <!-->K at 200<!--> <!-->GPa, driven by strong electron–phonon coupling between H-1<em>s</em> states and low-frequency hydrogen-derived phonon modes—a mechanism notably distinct from that of hydrogen cages in LaH<sub>10</sub> and CaH<sub>6</sub>. The predicted <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> values of NH<sub>11</sub> and NH<sub>12</sub> also exceeds 130 K. Our work introduces a new paradigm for designing nonmetal superhydrides with structurally engineered hydrogenic frameworks.</div></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"15 ","pages":"Article 100196"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277283072500047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Extended hydrogen-rich frameworks stabilized under high pressure are essential for achieving high-temperature superconductivity in metal hydrides, where metal atoms contribute both charge and intrinsic precompression. In contrast, p-block nonmetal hydrides lack such extended hydrogenic connectivity. Here, using first-principles crystal structure search calculations, we identify three nitrogen-based superhydrides—NH10, NH11, and NH12—each featuring a unique extended H sublattice: corrugated graphene-like hydrogen layers in NH10, planar H16-ring sheets in NH11, and a fully three-dimensional, densely connected H framework in NH12. These structures are stabilized by NH4+ units, which donate charge in a manner analogous to metal atoms in conventional metal superhydrides. Remarkably, NH10 exhibits a superconducting critical temperature (Tc) of 190 K at 200 GPa, driven by strong electron–phonon coupling between H-1s states and low-frequency hydrogen-derived phonon modes—a mechanism notably distinct from that of hydrogen cages in LaH10 and CaH6. The predicted Tc values of NH11 and NH12 also exceeds 130 K. Our work introduces a new paradigm for designing nonmetal superhydrides with structurally engineered hydrogenic frameworks.
非金属超氢化物中的扩展氢框架实现190k超导性
在高压下稳定的扩展富氢框架对于实现金属氢化物的高温超导性至关重要,其中金属原子既贡献电荷又贡献固有预压缩。相比之下,p-嵌段非金属氢化物缺乏这种扩展的氢连通性。在这里,利用第一性原理晶体结构搜索计算,我们确定了三种氮基超氢化物——NH10、NH11和NH12,每一种都具有独特的扩展H亚晶格:NH10中的波纹状石墨烯状氢层,NH11中的平面h16环片,NH12中的完全三维,紧密连接的H框架。这些结构由NH4+单元稳定,NH4+单元以类似于传统金属超氢化物中的金属原子的方式提供电荷。值得注意的是,NH10在200 GPa下表现出190 K的超导临界温度(Tc),这是由H-1s态和低频氢衍生声子模式之间的强电子-声子耦合驱动的,这一机制与LaH10和CaH6中的氢笼的机制明显不同。NH11和NH12的预测Tc值也超过130 K。我们的工作介绍了一种用结构工程氢框架设计非金属超氢化物的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信