Luis Alonso Valdez-Aguilar , Daniela Alvarado-Camarillo , Ponciano Solórzano-Martínez , Luis Alfonso García-Cerda , Ileana Vera-Reyes
{"title":"Synergistic effects of zinc and silicon dioxide nanoparticles improve cucumber (Cucumis sativus L) drought tolerance","authors":"Luis Alonso Valdez-Aguilar , Daniela Alvarado-Camarillo , Ponciano Solórzano-Martínez , Luis Alfonso García-Cerda , Ileana Vera-Reyes","doi":"10.1016/j.plana.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>Water scarcity significantly threatens agricultural productivity because of changing precipitation patterns and increasing competition for water use. Nanotechnology presents a sustainable and cost-effective strategy to improve water use efficiency, particularly through the application of silicon dioxide nanoparticles (nSiO₂) and zinc (Zn), as they alleviate water stress by enhancing plant water relationships. This study assessed the effects of nSiO₂ alone or in combination with zinc oxide (ZnO) at concentrations of 1.5 % and 3.0 %, applied at 150 mg L⁻¹ , on cucumber plants under water stress. The results indicated that nSiO₂ and nSiO₂ + ZnO<sub>1.5 %</sub> significantly increased fruit yield by 52.7 % (5134.3 g), whereas water stress reduced yield by 31.1 % (2449.7 g). These treatments, nSiO₂ and nSiO₂ + ZnO<sub>1.5 %</sub>, helped recover fruit production under drought conditions, with yields reaching levels comparable to those of well-irrigated control plants. Moreover, they reduced fruit abortion by 27.1 % and 25.2 %, respectively. The application of nSiO₂ + ZnO<sub>1.5 %</sub> and nSiO₂ + ZnO<sub>3.0 %</sub> increased the root biomass under both normal and deficit irrigation and increased the root-to-shoot ratio, indicating adaptive biomass allocation to optimize water uptake. The net photosynthesis rate improved in drought-stressed plants treated with nSiO₂ alone, whereas under regular irrigation, the combination with ZnO<sub>1.5 %</sub> was more effective. The mesophyll conductance decreased in drought-stressed plants treated with nSiO₂ + ZnO<sub>1.5 %</sub>, which was associated with increased intrinsic water use efficiency (iWUE). The combination also increased leaf Zn levels and improved stomatal conductance, although nSiO₂ alone reduced the leaf silicon content, suggesting that the cultivar is not a silicon accumulator. The combination of nSiO₂ and ZnO<sub>1.5 %</sub> is a promising approach to increase drought tolerance in cucumbers by improving yield, water use efficiency, and physiological responses under water-limited conditions</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100193"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water scarcity significantly threatens agricultural productivity because of changing precipitation patterns and increasing competition for water use. Nanotechnology presents a sustainable and cost-effective strategy to improve water use efficiency, particularly through the application of silicon dioxide nanoparticles (nSiO₂) and zinc (Zn), as they alleviate water stress by enhancing plant water relationships. This study assessed the effects of nSiO₂ alone or in combination with zinc oxide (ZnO) at concentrations of 1.5 % and 3.0 %, applied at 150 mg L⁻¹ , on cucumber plants under water stress. The results indicated that nSiO₂ and nSiO₂ + ZnO1.5 % significantly increased fruit yield by 52.7 % (5134.3 g), whereas water stress reduced yield by 31.1 % (2449.7 g). These treatments, nSiO₂ and nSiO₂ + ZnO1.5 %, helped recover fruit production under drought conditions, with yields reaching levels comparable to those of well-irrigated control plants. Moreover, they reduced fruit abortion by 27.1 % and 25.2 %, respectively. The application of nSiO₂ + ZnO1.5 % and nSiO₂ + ZnO3.0 % increased the root biomass under both normal and deficit irrigation and increased the root-to-shoot ratio, indicating adaptive biomass allocation to optimize water uptake. The net photosynthesis rate improved in drought-stressed plants treated with nSiO₂ alone, whereas under regular irrigation, the combination with ZnO1.5 % was more effective. The mesophyll conductance decreased in drought-stressed plants treated with nSiO₂ + ZnO1.5 %, which was associated with increased intrinsic water use efficiency (iWUE). The combination also increased leaf Zn levels and improved stomatal conductance, although nSiO₂ alone reduced the leaf silicon content, suggesting that the cultivar is not a silicon accumulator. The combination of nSiO₂ and ZnO1.5 % is a promising approach to increase drought tolerance in cucumbers by improving yield, water use efficiency, and physiological responses under water-limited conditions