Discovering the Crystal Structure of Biogenic Xanthine Crystals

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Maria Ifliand, Lothar Houben, Margarita Shepelenko, Yishay Feldman, Anna Eden Kossoy, Ofir Friedman, Mariana Hildebrand, Lia Addadi*, Leslie Leiserowitz* and Leeor Kronik*, 
{"title":"Discovering the Crystal Structure of Biogenic Xanthine Crystals","authors":"Maria Ifliand,&nbsp;Lothar Houben,&nbsp;Margarita Shepelenko,&nbsp;Yishay Feldman,&nbsp;Anna Eden Kossoy,&nbsp;Ofir Friedman,&nbsp;Mariana Hildebrand,&nbsp;Lia Addadi*,&nbsp;Leslie Leiserowitz* and Leeor Kronik*,&nbsp;","doi":"10.1021/acs.cgd.5c00619","DOIUrl":null,"url":null,"abstract":"<p >Thin xanthine crystal plates operate as mirrors in the ocelli (small eyes) of the insect <i>L. rozsypali</i> (jumping bristletail), where they form superstructures that are used to reflect missed incident light back to the light detectors. Here, we present the structure of the biogenic xanthine crystals. Structure determination is made possible by combining electron diffraction and 4D scanning transmission electron microscopy with fundamental symmetry considerations and first-principles calculations based on density functional theory. We find three possible structures, all layered, with individual planes comprised of the same planar hydrogen-bonded network. However, they are different polytypes (i.e., exhibit different stacking of the individual planes). One of these polytypes corresponds to the structure of the biogenic crystals, whereas a second polytype corresponds to the structure recently determined for synthetic xanthine crystals.</p><p >The crystalline structure of thin xanthine plates that operate as mirrors in the eyes of the jumping bristletail is solved by combining electron diffraction and 4D scanning transmission electron microscopy with fundamental symmetry considerations and density functional theory.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 18","pages":"7524–7536"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.5c00619","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00619","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin xanthine crystal plates operate as mirrors in the ocelli (small eyes) of the insect L. rozsypali (jumping bristletail), where they form superstructures that are used to reflect missed incident light back to the light detectors. Here, we present the structure of the biogenic xanthine crystals. Structure determination is made possible by combining electron diffraction and 4D scanning transmission electron microscopy with fundamental symmetry considerations and first-principles calculations based on density functional theory. We find three possible structures, all layered, with individual planes comprised of the same planar hydrogen-bonded network. However, they are different polytypes (i.e., exhibit different stacking of the individual planes). One of these polytypes corresponds to the structure of the biogenic crystals, whereas a second polytype corresponds to the structure recently determined for synthetic xanthine crystals.

The crystalline structure of thin xanthine plates that operate as mirrors in the eyes of the jumping bristletail is solved by combining electron diffraction and 4D scanning transmission electron microscopy with fundamental symmetry considerations and density functional theory.

生物源黄嘌呤晶体结构的发现
薄的黄嘌呤晶体板在昆虫L. rozsypali(跳毛尾)的ocelli(小眼睛)中起着镜子的作用,在那里它们形成了上层结构,用来将错过的入射光反射回光探测器。在这里,我们展示了生物源黄嘌呤晶体的结构。通过结合电子衍射和4D扫描透射电子显微镜以及基于密度泛函理论的基本对称性考虑和第一性原理计算,结构确定成为可能。我们发现了三种可能的结构,它们都是分层的,单个平面由相同的平面氢键网络组成。然而,它们是不同的多型(即,表现出不同的单个平面的堆叠)。其中一个多型对应于生物源晶体的结构,而第二个多型对应于最近确定的合成黄嘌呤晶体的结构。结合基本的对称性考虑和密度泛函理论,将电子衍射和4D扫描透射电子显微镜相结合,解决了跳跃鬃毛眼睛中作为镜子的薄黄嘌呤板的晶体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信