Sneha Suresh, Niteen B. Dabke, Rinu Pandya, Kumar Vanka, Madhusudan Dutta and Rajesh G. Gonnade*,
{"title":"Cocrystals of the Green Fluorescence Protein Chromophore Analogue: Coformer-Induced Switch between AIE and ACQ","authors":"Sneha Suresh, Niteen B. Dabke, Rinu Pandya, Kumar Vanka, Madhusudan Dutta and Rajesh G. Gonnade*, ","doi":"10.1021/acs.cgd.5c00559","DOIUrl":null,"url":null,"abstract":"<p >Fluorescent organic solids hold great potential for advancing photonics applications. However, tuning their solid-state photoluminescent emissions remains a significant challenge. In this study, we report the synthesis and characterization of five cocrystals (two cocrystal polymorphs) derived from a pristine imidazolinone derivative (<b>A</b>) and the various coformer molecules, namely 1,2,4,5-tetrafluoro-3,6-diiodobenzene, 1,2,4,5-tetrafluoro-3,6-dibromobenzene, perfluoronaphthalene, and 3,4,5-trifluorobenzoic acid. The structural and optical properties of these cocrystals were examined by using single-crystal X-ray diffraction, absorption spectroscopy, photoluminescence spectroscopy, and photoluminescence decay spectroscopy. Cocrystals <b>I</b>, <b>II</b>, and <b>III</b> are isomorphous pairs and exhibit three-dimensional isostructurality, where the coformer molecules bridge adjacent helices of compound <b>A</b>, leading to aggregation-induced emission. In contrast, the cocrystal polymorphs <b>IVA</b> and <b>IVB</b> developed using coformer 3,4,5-trifluorobenzoic acid form two-dimensional sheet-like structures mediated by π-stacking interactions between the coformers and molecule <b>A</b>, with interplanar distances ranging from 3.2 to 3.5 Å. These stronger π–π interactions promote nonradiative decay pathways, resulting in reduced or quenched fluorescence and an aggregation-caused quenching effect. To gain further insights into their electronic properties, theoretical analysis including frontier molecular orbitals, time-dependent density functional theory, Hirshfeld surface analysis, molecular electrostatic potential, and noncovalent interaction plots were performed.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 18","pages":"7473–7488"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00559","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent organic solids hold great potential for advancing photonics applications. However, tuning their solid-state photoluminescent emissions remains a significant challenge. In this study, we report the synthesis and characterization of five cocrystals (two cocrystal polymorphs) derived from a pristine imidazolinone derivative (A) and the various coformer molecules, namely 1,2,4,5-tetrafluoro-3,6-diiodobenzene, 1,2,4,5-tetrafluoro-3,6-dibromobenzene, perfluoronaphthalene, and 3,4,5-trifluorobenzoic acid. The structural and optical properties of these cocrystals were examined by using single-crystal X-ray diffraction, absorption spectroscopy, photoluminescence spectroscopy, and photoluminescence decay spectroscopy. Cocrystals I, II, and III are isomorphous pairs and exhibit three-dimensional isostructurality, where the coformer molecules bridge adjacent helices of compound A, leading to aggregation-induced emission. In contrast, the cocrystal polymorphs IVA and IVB developed using coformer 3,4,5-trifluorobenzoic acid form two-dimensional sheet-like structures mediated by π-stacking interactions between the coformers and molecule A, with interplanar distances ranging from 3.2 to 3.5 Å. These stronger π–π interactions promote nonradiative decay pathways, resulting in reduced or quenched fluorescence and an aggregation-caused quenching effect. To gain further insights into their electronic properties, theoretical analysis including frontier molecular orbitals, time-dependent density functional theory, Hirshfeld surface analysis, molecular electrostatic potential, and noncovalent interaction plots were performed.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.