Molecular Design Principles for Tailoring the Partitioning of CO2-Soluble Surfactants in CO2/Water Systems

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Faqiang Dang, Songyan Li*, Shaopeng Li, Liang Liu and Huazhou Li*, 
{"title":"Molecular Design Principles for Tailoring the Partitioning of CO2-Soluble Surfactants in CO2/Water Systems","authors":"Faqiang Dang,&nbsp;Songyan Li*,&nbsp;Shaopeng Li,&nbsp;Liang Liu and Huazhou Li*,&nbsp;","doi":"10.1021/acs.energyfuels.5c03616","DOIUrl":null,"url":null,"abstract":"<p >The molecular design of CO<sub>2</sub>-soluble surfactants is critical for improving CO<sub>2</sub> mobility control in enhanced oil recovery and geological carbon storage. However, current design strategies remain largely empirical due to the lack of predictive structure–property relationships. The CO<sub>2</sub> surfactant’s performance is governed by its gas–liquid partition coefficient (<i>k</i>) between CO<sub>2</sub> and water, which dictates its transport efficiency by supercritical CO<sub>2</sub> and in situ foaming behavior. Here, we establish quantitative molecular design principles that enable the predictive tuning of <i>k</i>. A homologous series of nine nonionic surfactants (DFQ-series) with systematically varied architectures is evaluated over a broad range of temperatures (35–65 °C) and pressures (10–26 MPa) using a PVT system. This study proposes a four-level design strategy to optimize the CO<sub>2</sub>–water partition coefficient. Key structural features─molecular size, segmental composition, and hydrophobic architecture─jointly govern the <i>k</i> value. First, minimizing the total number of propylene oxide (PO) and ethylene oxide (EO) units is essential. A compact surfactant (DFQ-4, 10 units) tends to yield a higher <i>k</i> value. In contrast, an oversized analog (DFQ-3, 22 units) shows poor partitioning. Second, increasing the PO/EO ratio enhances CO<sub>2</sub>-philicity when the total number of PO and EO groups is fixed. At 35 °C and 26 MPa, DFQ-2 (9PO/9EO) yields <i>k</i> = 1.41, while DFQ-5 (5PO/13EO) reaches only <i>k</i> = 1.07. Third, shortening the linear alkyl tail significantly improves partitioning. Reducing the chain length from C12 to C6 raises <i>k</i> from 0.38 (DFQ-8) to 1.46 (DFQ-6) at 35 °C and 26 MPa. A C18 tail results in complete CO<sub>2</sub> insolubility. Finally, introducing tail branching further boosts CO<sub>2</sub> solubility. A multibranched surfactant (DFQ-7) reaches a higher <i>k</i> value than its linear counterpart DFQ-6. The proposed design principles enable targeted development of CO<sub>2</sub>-soluble surfactants for effective carbon capture, utilization, and storage (CCUS) deployment.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 37","pages":"17974–17989"},"PeriodicalIF":5.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03616","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular design of CO2-soluble surfactants is critical for improving CO2 mobility control in enhanced oil recovery and geological carbon storage. However, current design strategies remain largely empirical due to the lack of predictive structure–property relationships. The CO2 surfactant’s performance is governed by its gas–liquid partition coefficient (k) between CO2 and water, which dictates its transport efficiency by supercritical CO2 and in situ foaming behavior. Here, we establish quantitative molecular design principles that enable the predictive tuning of k. A homologous series of nine nonionic surfactants (DFQ-series) with systematically varied architectures is evaluated over a broad range of temperatures (35–65 °C) and pressures (10–26 MPa) using a PVT system. This study proposes a four-level design strategy to optimize the CO2–water partition coefficient. Key structural features─molecular size, segmental composition, and hydrophobic architecture─jointly govern the k value. First, minimizing the total number of propylene oxide (PO) and ethylene oxide (EO) units is essential. A compact surfactant (DFQ-4, 10 units) tends to yield a higher k value. In contrast, an oversized analog (DFQ-3, 22 units) shows poor partitioning. Second, increasing the PO/EO ratio enhances CO2-philicity when the total number of PO and EO groups is fixed. At 35 °C and 26 MPa, DFQ-2 (9PO/9EO) yields k = 1.41, while DFQ-5 (5PO/13EO) reaches only k = 1.07. Third, shortening the linear alkyl tail significantly improves partitioning. Reducing the chain length from C12 to C6 raises k from 0.38 (DFQ-8) to 1.46 (DFQ-6) at 35 °C and 26 MPa. A C18 tail results in complete CO2 insolubility. Finally, introducing tail branching further boosts CO2 solubility. A multibranched surfactant (DFQ-7) reaches a higher k value than its linear counterpart DFQ-6. The proposed design principles enable targeted development of CO2-soluble surfactants for effective carbon capture, utilization, and storage (CCUS) deployment.

Abstract Image

在CO2/水系统中裁剪CO2可溶性表面活性剂分配的分子设计原则
二氧化碳可溶性表面活性剂的分子设计对于提高石油采收率和地质储碳能力、控制二氧化碳迁移率至关重要。然而,由于缺乏预测的结构-性能关系,目前的设计策略在很大程度上仍然是经验的。CO2表面活性剂的性能取决于其在CO2和水之间的气液分配系数(k), k决定了其通过超临界CO2的输运效率和原位发泡行为。在这里,我们建立了定量分子设计原则,使k的预测调谐成为可能。使用PVT系统,在广泛的温度(35-65°C)和压力(10-26 MPa)范围内评估了具有系统不同结构的9种非离子表面活性剂(dfq系列)的同源系列。本研究提出了一个优化co2 -水分配系数的四级设计策略。关键的结构特征──分子大小、节段组成和疏水结构──共同决定了k值。首先,尽量减少环氧丙烷(PO)和环氧乙烷(EO)单位的总数是必不可少的。紧凑型表面活性剂(dfq - 4,10单位)倾向于产生更高的k值。相比之下,超大的模拟(dfq - 3,22个单元)显示了较差的分区。其次,在PO和EO基团总数一定的情况下,增加PO/EO的比例可以增强聚合物的亲水性。在35°C和26 MPa下,DFQ-2 (9PO/9EO)的产率k = 1.41,而DFQ-5 (5PO/13EO)的产率k = 1.07。第三,线性烷基尾的缩短显著改善了分配。在35°C和26 MPa条件下,将链长从C12减少到C6, k值从0.38 (DFQ-8)增加到1.46 (DFQ-6)。C18尾部导致CO2完全不溶解。最后,尾部分支的引入进一步提高了二氧化碳的溶解度。多支表面活性剂DFQ-7比线性表面活性剂DFQ-6具有更高的k值。所提出的设计原则能够有针对性地开发二氧化碳可溶性表面活性剂,以实现有效的碳捕获、利用和封存(CCUS)部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信