David E. Pfister*, Airy Tilland, Ludivine Larue, Kilian Kobl, Philipp Weber and Martin Olbrich,
{"title":"Kinetic Modeling of Solid-Phase Oligonucleotide Synthesis: Mechanistic Insights and Reaction Dynamics","authors":"David E. Pfister*, Airy Tilland, Ludivine Larue, Kilian Kobl, Philipp Weber and Martin Olbrich, ","doi":"10.1021/acs.oprd.5c00199","DOIUrl":null,"url":null,"abstract":"<p >Solid-phase oligonucleotide synthesis is a cornerstone of modern biotechnology, enabling the production of custom DNA and RNA sequences for therapeutic, diagnostic, and research applications. Despite its widespread use, the kinetics of this process remain incompletely understood, limiting efforts to enhance efficiency and yield and reduce environmental impact. This study presents a comprehensive kinetic model of solid-phase oligonucleotide synthesis, integrating mechanistic insights into the stepwise coupling, capping, oxidation, and detritylation reactions. Using a combination of computational simulations and experimental data, we identify rate-limiting steps and quantify the influence of reaction conditions─such as concentrations, step duration, and stoichiometry─on synthesis performance. The model is a first step to predicting strategies for process optimization, including adjusted cycle times and excess ratios. Validation against experimental synthesis runs demonstrates that the proposed model can be used for predictive purposes. These findings offer a quantitative framework for improving solid-phase oligonucleotide synthesis with implications for scalable production and cost-effective design of nucleic acid–based technologies.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 9","pages":"2298–2309"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.5c00199","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-phase oligonucleotide synthesis is a cornerstone of modern biotechnology, enabling the production of custom DNA and RNA sequences for therapeutic, diagnostic, and research applications. Despite its widespread use, the kinetics of this process remain incompletely understood, limiting efforts to enhance efficiency and yield and reduce environmental impact. This study presents a comprehensive kinetic model of solid-phase oligonucleotide synthesis, integrating mechanistic insights into the stepwise coupling, capping, oxidation, and detritylation reactions. Using a combination of computational simulations and experimental data, we identify rate-limiting steps and quantify the influence of reaction conditions─such as concentrations, step duration, and stoichiometry─on synthesis performance. The model is a first step to predicting strategies for process optimization, including adjusted cycle times and excess ratios. Validation against experimental synthesis runs demonstrates that the proposed model can be used for predictive purposes. These findings offer a quantitative framework for improving solid-phase oligonucleotide synthesis with implications for scalable production and cost-effective design of nucleic acid–based technologies.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.