Surface-Plasmon-Mediated Reduction in the Effective Gilbert Damping in Hybrid Photomagnetic Au/YIG:Co Bilayers

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Artur Avdizhiyan, Artsiom Kazlou, Terunori Kaihara, Andrzej Stupakiewicz* and Ilya Razdolski*, 
{"title":"Surface-Plasmon-Mediated Reduction in the Effective Gilbert Damping in Hybrid Photomagnetic Au/YIG:Co Bilayers","authors":"Artur Avdizhiyan,&nbsp;Artsiom Kazlou,&nbsp;Terunori Kaihara,&nbsp;Andrzej Stupakiewicz* and Ilya Razdolski*,&nbsp;","doi":"10.1021/acsphotonics.5c00933","DOIUrl":null,"url":null,"abstract":"<p >We demonstrate surface plasmon-mediated control of the magnetic damping in photomagnetic Co-doped yittrium iron garnet (YIG:Co)/Au bilayers. Tuning the excitation wavelength across the surface plasmon resonance at the Au/YIG:Co interface, we observe a twofold increase of the lifetime of the magnetization precession induced by the nonthermal photomagnetic effect in YIG:Co. The damping modulation is attributed to the plasmon-mediated spin Seebeck effect. Numerical simulations corroborate this mechanism and enable further exploration of the parameter space of the Au plasmonic system. We analyze the role of the Au grating thickness and discuss the range of thicknesses where the largest spin-Seebeck-driven reduction of magnetic damping can be accompanied by strong photomagnetic excitation. These results expand our understanding of the nanophotonic methods for controlling spin dynamics in ferrimagnetic media which are promising for future applications in information recording and data storage.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 9","pages":"5024–5031"},"PeriodicalIF":6.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00933","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate surface plasmon-mediated control of the magnetic damping in photomagnetic Co-doped yittrium iron garnet (YIG:Co)/Au bilayers. Tuning the excitation wavelength across the surface plasmon resonance at the Au/YIG:Co interface, we observe a twofold increase of the lifetime of the magnetization precession induced by the nonthermal photomagnetic effect in YIG:Co. The damping modulation is attributed to the plasmon-mediated spin Seebeck effect. Numerical simulations corroborate this mechanism and enable further exploration of the parameter space of the Au plasmonic system. We analyze the role of the Au grating thickness and discuss the range of thicknesses where the largest spin-Seebeck-driven reduction of magnetic damping can be accompanied by strong photomagnetic excitation. These results expand our understanding of the nanophotonic methods for controlling spin dynamics in ferrimagnetic media which are promising for future applications in information recording and data storage.

Abstract Image

表面等离子体介导的杂化光磁性Au/YIG:Co双层膜中有效吉尔伯特阻尼的减少
我们证明了表面等离子体介导的光磁共掺杂钇铁石榴石(YIG:Co)/Au双分子层的磁阻尼控制。通过调整Au/YIG:Co界面表面等离子体共振的激发波长,我们观察到YIG:Co中由非热光磁效应引起的磁化进动寿命增加了两倍。阻尼调制归因于等离子体介导的自旋塞贝克效应。数值模拟证实了这一机理,并为进一步探索金等离子体系统的参数空间提供了可能。我们分析了金光栅厚度的作用,并讨论了在多大的厚度范围内,自旋塞贝克驱动的磁阻尼减小可以伴随着强烈的光磁激励。这些结果扩大了我们对控制亚铁磁介质中自旋动力学的纳米光子方法的理解,这些方法在信息记录和数据存储方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信