Three-Pronged Approach (Active Pharmaceutical Ingredients, Excipients, and NOx-Free Air) Successfully Suppressed the Formation of Nitroso-atomoxetine to 0.097 ppm
Ryota Nomura*, Takahiko Taniguchi, Koji Kitada, Mamoru Otsuki, Takuma Tamai, Kazuya Suzuoki, Rintaro Yokoi, Kanako Kondo and Osamu Uchikawa,
{"title":"Three-Pronged Approach (Active Pharmaceutical Ingredients, Excipients, and NOx-Free Air) Successfully Suppressed the Formation of Nitroso-atomoxetine to 0.097 ppm","authors":"Ryota Nomura*, Takahiko Taniguchi, Koji Kitada, Mamoru Otsuki, Takuma Tamai, Kazuya Suzuoki, Rintaro Yokoi, Kanako Kondo and Osamu Uchikawa, ","doi":"10.1021/acs.oprd.5c00182","DOIUrl":null,"url":null,"abstract":"<p >News of “carcinogenic nitrosamines in pharmaceutical products” circulates around the world, and regulatory agencies and pharmaceutical companies are facing challenges in reducing the presence of nitrosamines. A variety of causes affect the presence of nitrosamine and complicate the mitigation process. However, our three-pronged approach combining empirical knowledge has successfully reduced the level of nitroso-atomoxetine to 0.097 ppm.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 9","pages":"2259–2264"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.5c00182","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.5c00182","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
News of “carcinogenic nitrosamines in pharmaceutical products” circulates around the world, and regulatory agencies and pharmaceutical companies are facing challenges in reducing the presence of nitrosamines. A variety of causes affect the presence of nitrosamine and complicate the mitigation process. However, our three-pronged approach combining empirical knowledge has successfully reduced the level of nitroso-atomoxetine to 0.097 ppm.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.