Improving the presentation of HONO in CMAQ based on observations over the Yangtze River Delta Region

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Shuxian Zhang , Jie Yao , Honghui Xu , Jun He , Man Yue , Meng Shan , Fan Meng , Xiaoai Jin , Ziqi Jin , Huansang Chen , Yilei Dong
{"title":"Improving the presentation of HONO in CMAQ based on observations over the Yangtze River Delta Region","authors":"Shuxian Zhang ,&nbsp;Jie Yao ,&nbsp;Honghui Xu ,&nbsp;Jun He ,&nbsp;Man Yue ,&nbsp;Meng Shan ,&nbsp;Fan Meng ,&nbsp;Xiaoai Jin ,&nbsp;Ziqi Jin ,&nbsp;Huansang Chen ,&nbsp;Yilei Dong","doi":"10.1016/j.atmosres.2025.108487","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate representation of nitrous acid (HONO) chemistry is critical for modeling atmospheric oxidation capacity and secondary pollutants like ozone (O<sub>3</sub>) in China, yet current air quality models systematically underestimate HONO. To address this deficiency in the Community Multiscale Air Quality (CMAQ) model, we integrated five additional heterogeneous reactions: heterogeneous NO<sub>2</sub> reactions on ground/aerosol surfaces, particulate nitrate photolysis, NO<sub>x</sub> oxidation, and acid displacement reactions. These updates were evaluated against wintertime HONO observations from the Lin'an Regional Atmospheric Background Station (LABS) in the Yangtze River Delta (YRD). The revised model reduced HONO underestimation dramatically, improving normalized mean bias from −90.0 % to −34.4 %. The simulation results demonstrated that ground-surface heterogeneous reactions dominated overall HONO production (45.4 %), peaking at night (65.3 %), while daytime formation was primarily driven by acid displacement (53.3 %). The enhanced HONO simulation amplified atmospheric oxidation capacity, increasing hydroxyl (OH) and hydroperoxyl (HO<sub>2</sub>) radical concentrations by 87.6 % and 172.6 %, respectively. Consequently, O<sub>3</sub> peak simulations improved by 6.0–17.0 %, significantly reducing model bias (NMB: −8.9 % to −2.0 %) and better capturing pollution episodes. The model's enhanced representation of HONO formation significantly reduced the discrepancy between simulated and observed data, underscoring the critical importance of comprehending and accurately modeling HONO in the study of secondary pollution.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"329 ","pages":"Article 108487"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525005794","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate representation of nitrous acid (HONO) chemistry is critical for modeling atmospheric oxidation capacity and secondary pollutants like ozone (O3) in China, yet current air quality models systematically underestimate HONO. To address this deficiency in the Community Multiscale Air Quality (CMAQ) model, we integrated five additional heterogeneous reactions: heterogeneous NO2 reactions on ground/aerosol surfaces, particulate nitrate photolysis, NOx oxidation, and acid displacement reactions. These updates were evaluated against wintertime HONO observations from the Lin'an Regional Atmospheric Background Station (LABS) in the Yangtze River Delta (YRD). The revised model reduced HONO underestimation dramatically, improving normalized mean bias from −90.0 % to −34.4 %. The simulation results demonstrated that ground-surface heterogeneous reactions dominated overall HONO production (45.4 %), peaking at night (65.3 %), while daytime formation was primarily driven by acid displacement (53.3 %). The enhanced HONO simulation amplified atmospheric oxidation capacity, increasing hydroxyl (OH) and hydroperoxyl (HO2) radical concentrations by 87.6 % and 172.6 %, respectively. Consequently, O3 peak simulations improved by 6.0–17.0 %, significantly reducing model bias (NMB: −8.9 % to −2.0 %) and better capturing pollution episodes. The model's enhanced representation of HONO formation significantly reduced the discrepancy between simulated and observed data, underscoring the critical importance of comprehending and accurately modeling HONO in the study of secondary pollution.
基于长江三角洲地区观测资料改进CMAQ中HONO的表现
准确表征亚硝酸(HONO)化学对于模拟中国大气氧化能力和臭氧(O3)等二次污染物至关重要,但目前的空气质量模型系统地低估了HONO。为了解决社区多尺度空气质量(CMAQ)模型中的这一缺陷,我们整合了五个额外的非均相反应:地面/气溶胶表面的非均相NO2反应、颗粒硝酸盐光解、NOx氧化和酸置换反应。利用长江三角洲临安区域大气背景站的冬季HONO观测资料对这些更新进行了评价。修正后的模型显著降低了HONO低估,将归一化平均偏差从- 90.0%提高到- 34.4%。模拟结果表明,地面非均相反应主导了整体HONO产量(45.4%),在夜间达到峰值(65.3%),而白天地层主要由酸驱驱动(53.3%)。增强的HONO模拟放大了大气的氧化能力,羟基(OH)和羟基(HO2)自由基浓度分别增加了87.6%和172.6%。因此,O3峰值模拟提高了6.0 - 17.0%,显著降低了模型偏差(NMB:−8.9%至−2.0%),更好地捕捉了污染事件。该模型增强了对HONO形成的表征,显著减小了模拟数据与观测数据之间的差异,强调了在二次污染研究中理解和准确建模HONO的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信