An averaged L1 ADI compact difference scheme for the three-dimensional time-fractional mobile/immobile transport equation with weakly singular solutions

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Kai Liu, Haixiang Zhang, Xuehua Yang
{"title":"An averaged L1 ADI compact difference scheme for the three-dimensional time-fractional mobile/immobile transport equation with weakly singular solutions","authors":"Kai Liu,&nbsp;Haixiang Zhang,&nbsp;Xuehua Yang","doi":"10.1016/j.camwa.2025.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a three-dimensional (3D) time-fractional mobile/immobile (MIM) transport equation, which incorporates the Caputo time-fractional derivative of order <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, is taken into consideration. The space derivatives are discretized using the compact finite difference approximation, and the Caputo time-fractional derivative is estimated by employing the averaged L1 formula. Combining with corresponding alternating direction implicit (ADI) algorithms, the overall computational cost is reduced significantly. Using the discrete energy analysis methodology, we demonstrate that the suggested method possesses temporal second-order convergence and spatial fourth-order convergence under the regularity assumption. Numerical experiments demonstrate that ADI techniques is effective in computing 3D problems.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 102-116"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a three-dimensional (3D) time-fractional mobile/immobile (MIM) transport equation, which incorporates the Caputo time-fractional derivative of order α(0,1), is taken into consideration. The space derivatives are discretized using the compact finite difference approximation, and the Caputo time-fractional derivative is estimated by employing the averaged L1 formula. Combining with corresponding alternating direction implicit (ADI) algorithms, the overall computational cost is reduced significantly. Using the discrete energy analysis methodology, we demonstrate that the suggested method possesses temporal second-order convergence and spatial fourth-order convergence under the regularity assumption. Numerical experiments demonstrate that ADI techniques is effective in computing 3D problems.
具有弱奇异解的三维时间分数阶可动/不可动输运方程的平均L1 - ADI紧致差分格式
本文考虑了一个三维(3D)时间分数移动/不移动(MIM)输运方程,该输运方程包含了阶α∈(0,1)的Caputo时间分数导数。利用紧致有限差分近似对空间导数进行离散化,利用平均L1公式估计卡普托时间分数阶导数。结合相应的交替方向隐式(ADI)算法,显著降低了总体计算成本。在正则性假设下,利用离散能量分析方法证明了该方法具有时间二阶收敛性和空间四阶收敛性。数值实验表明,ADI技术在三维问题计算中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信