Energy analysis and microfracture characteristics of granite under dynamic modes I and II loading based on image processing techniques

IF 7.5 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zida Liu , Zong-Xian Zhang , Quanqi Zhu , Peng Xiao , Jiaming Yang , Diyuan Li
{"title":"Energy analysis and microfracture characteristics of granite under dynamic modes I and II loading based on image processing techniques","authors":"Zida Liu ,&nbsp;Zong-Xian Zhang ,&nbsp;Quanqi Zhu ,&nbsp;Peng Xiao ,&nbsp;Jiaming Yang ,&nbsp;Diyuan Li","doi":"10.1016/j.ijrmms.2025.106287","DOIUrl":null,"url":null,"abstract":"<div><div>Notched semi-circular bending (NSCB) granite specimens were used in dynamic mode Ⅰ and mode Ⅱ loading conditions. Image processing techniques were innovatively used to determine the translational (<span><math><mrow><msub><mi>W</mi><mrow><mi>t</mi><mi>k</mi></mrow></msub></mrow></math></span>) and rotational (<span><math><mrow><msub><mi>W</mi><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></math></span>) kinetic energies of each specimen. The true fracture surface area was determined using a scanning electron microscope at 2000 × magnification, enabling the calculation of the true fracture energy (<span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span>). Additionally, deep learning was used to quantitatively determine the tensile and shear morphologies on the fracture surfaces. The results showed that: (1) In mode I, <span><math><mrow><msub><mi>W</mi><mrow><mi>t</mi><mi>k</mi></mrow></msub></mrow></math></span> ranged from 1.47 to 9.07 J, and <span><math><mrow><msub><mi>W</mi><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></math></span> ranged from 0.45 to 3.59 J. In mode II, <span><math><mrow><msub><mi>W</mi><mrow><mi>t</mi><mi>k</mi></mrow></msub></mrow></math></span> ranged from 0.98 to 7.88 J, and <span><math><mrow><msub><mi>W</mi><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></math></span> ranged from 0.41 to 3.53 J. The total kinetic energy in mode I comprised over 51.5 % of the energy absorbed by the rock, while that in mode II comprised over 41.4 %. (2) The true fracture surface area of NSCB specimens was 2.1 times the nominal fracture surface area. (3) The <span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span> of mode Ⅰ ranged from 1066 to 3577 J/m<sup>2</sup>, and the <span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span> of mode Ⅱ ranged from 1195 to 3550 J/m<sup>2</sup> (4) Under the same loading rate, the fracture surface of mode Ⅱ exhibited a larger proportion of shear morphology, explaining why the <span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span> of mode Ⅱ was slightly higher than the <span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span> of mode Ⅰ. (5) The <span><math><mrow><msub><mi>w</mi><mi>f</mi></msub></mrow></math></span> of mode Ⅰ showed higher sensitivity to the variation of loading rate compared to mode Ⅱ, because the increase in shear morphology on mode I fracture surface was slightly greater than that on mode II fracture surface as loading rate was increased. These findings offer new insights into accurate fracture energy measurement and better understanding of rock microfracture characteristics under dynamic loading and demonstrate the importance of kinetic energy in rock fragmentation.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"195 ","pages":"Article 106287"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925002643","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Notched semi-circular bending (NSCB) granite specimens were used in dynamic mode Ⅰ and mode Ⅱ loading conditions. Image processing techniques were innovatively used to determine the translational (Wtk) and rotational (Wrk) kinetic energies of each specimen. The true fracture surface area was determined using a scanning electron microscope at 2000 × magnification, enabling the calculation of the true fracture energy (wf). Additionally, deep learning was used to quantitatively determine the tensile and shear morphologies on the fracture surfaces. The results showed that: (1) In mode I, Wtk ranged from 1.47 to 9.07 J, and Wrk ranged from 0.45 to 3.59 J. In mode II, Wtk ranged from 0.98 to 7.88 J, and Wrk ranged from 0.41 to 3.53 J. The total kinetic energy in mode I comprised over 51.5 % of the energy absorbed by the rock, while that in mode II comprised over 41.4 %. (2) The true fracture surface area of NSCB specimens was 2.1 times the nominal fracture surface area. (3) The wf of mode Ⅰ ranged from 1066 to 3577 J/m2, and the wf of mode Ⅱ ranged from 1195 to 3550 J/m2 (4) Under the same loading rate, the fracture surface of mode Ⅱ exhibited a larger proportion of shear morphology, explaining why the wf of mode Ⅱ was slightly higher than the wf of mode Ⅰ. (5) The wf of mode Ⅰ showed higher sensitivity to the variation of loading rate compared to mode Ⅱ, because the increase in shear morphology on mode I fracture surface was slightly greater than that on mode II fracture surface as loading rate was increased. These findings offer new insights into accurate fracture energy measurement and better understanding of rock microfracture characteristics under dynamic loading and demonstrate the importance of kinetic energy in rock fragmentation.
基于图像处理技术的ⅰ、ⅱ动力模式下花岗岩能量分析及微断裂特征
采用缺口半圆弯曲(NSCB)花岗岩试件进行动态模态Ⅰ和模态Ⅱ加载试验。创新地使用图像处理技术来确定每个标本的平移(Wtk)和旋转(Wrk)动能。利用扫描电子显微镜在2000倍的放大倍数下测定真断裂表面积,从而计算真断裂能(wf)。此外,深度学习还用于定量确定断口表面的拉伸和剪切形貌。结果表明:(1)在第一种模式下,Wtk范围为1.47 ~ 9.07 J, Wrk范围为0.45 ~ 3.59 J,在第二种模式下,Wtk范围为0.98 ~ 7.88 J, Wrk范围为0.41 ~ 3.53 J,第一种模式下的总动能占岩石吸收能量的51.5%以上,第二种模式下的总动能占41.4%以上。(2) NSCB试样的真实断裂面积为名义断裂面积的2.1倍。(3)Ⅰ模态的wf范围为1066 ~ 3577 J/m2,Ⅱ模态的wf范围为1195 ~ 3550 J/m2。(4)在相同加载速率下,Ⅱ模态断面表现出更大比例的剪切形态,这解释了Ⅱ模态的wf略高于Ⅰ模态的原因。(5)与Ⅱ模态相比,Ⅰ模态wf对加载速率变化的敏感性更高,因为随着加载速率的增加,I型断口上剪切形貌的增加略大于II型断口上剪切形貌的增加。这些发现为精确测量断裂能和更好地理解动载荷下岩石微破裂特征提供了新的见解,并证明了动能在岩石破碎中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信