A DOFs condensation based algorithm for solving saddle point systems in 2D contact computation

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaoyu Duan , Zihan Wang , Hengbin An , Zeyao Mo
{"title":"A DOFs condensation based algorithm for solving saddle point systems in 2D contact computation","authors":"Xiaoyu Duan ,&nbsp;Zihan Wang ,&nbsp;Hengbin An ,&nbsp;Zeyao Mo","doi":"10.1016/j.camwa.2025.08.032","DOIUrl":null,"url":null,"abstract":"<div><div>In contact mechanics computation, the constraint conditions on the contact surfaces are typically enforced by the Lagrange multiplier method, resulting in a saddle point system. The mortar finite element method is usually employed to discretize the variational form on the meshed contact surfaces, yielding a large-scale discretized saddle point system. Due to the indefiniteness of the discretized system, it is a challenge to solve the saddle point algebraic system. For two-dimensional tied contact problem, we develop an efficient algorithm based on degree-of-freedom (DOF) condensation. In this approach, a DOFs elimination process is first performed by exploiting the tridiagonal structure of the mortar matrix. The reduced linear system, now smaller in scale and symmetric positive definite (SPD), is then solved using the preconditioned conjugate gradient (PCG) method. Numerical results demonstrate the effectiveness of the algorithm.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 64-79"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003657","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In contact mechanics computation, the constraint conditions on the contact surfaces are typically enforced by the Lagrange multiplier method, resulting in a saddle point system. The mortar finite element method is usually employed to discretize the variational form on the meshed contact surfaces, yielding a large-scale discretized saddle point system. Due to the indefiniteness of the discretized system, it is a challenge to solve the saddle point algebraic system. For two-dimensional tied contact problem, we develop an efficient algorithm based on degree-of-freedom (DOF) condensation. In this approach, a DOFs elimination process is first performed by exploiting the tridiagonal structure of the mortar matrix. The reduced linear system, now smaller in scale and symmetric positive definite (SPD), is then solved using the preconditioned conjugate gradient (PCG) method. Numerical results demonstrate the effectiveness of the algorithm.
二维接触计算中基于自由度凝聚的鞍点方程组求解算法
在接触力学计算中,接触面上的约束条件通常采用拉格朗日乘子法,产生鞍点系统。通常采用砂浆有限元法对网格接触面上的变分形式进行离散化,得到一个大规模的离散化鞍点系统。由于离散系统的不确定性,求解鞍点代数系统是一个挑战。对于二维束缚接触问题,我们提出了一种基于自由度凝聚的有效算法。在这种方法中,首先通过利用砂浆基体的三对角线结构进行自由度消除过程。然后,利用预条件共轭梯度法求解简化后的线性系统,得到了更小的对称正定系统。数值结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信