A space-time discontinuous Petrov-Galerkin finite element formulation for a modified Schrödinger equation for laser pulse propagation in waveguides

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
A. Chakraborty , J. Muñoz-Matute , L. Demkowicz , J. Grosek
{"title":"A space-time discontinuous Petrov-Galerkin finite element formulation for a modified Schrödinger equation for laser pulse propagation in waveguides","authors":"A. Chakraborty ,&nbsp;J. Muñoz-Matute ,&nbsp;L. Demkowicz ,&nbsp;J. Grosek","doi":"10.1016/j.camwa.2025.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose a modified nonlinear Schrödinger equation for modeling pulse propagation in optical waveguides. The proposed model bifurcates into a system of elliptic and hyperbolic equations depending on waveguide parameters. The proposed model leads to a stable first-order system of equations, distinguishing itself from the canonical nonlinear Schrödinger equation. We have employed the space-time discontinuous Petrov-Galerkin finite element method to discretize the first-order system of equations. We present a stability analysis for both the elliptic and hyperbolic systems of equations and demonstrate the stability of the proposed model through several numerical examples on space-time meshes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 67-84"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003694","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a modified nonlinear Schrödinger equation for modeling pulse propagation in optical waveguides. The proposed model bifurcates into a system of elliptic and hyperbolic equations depending on waveguide parameters. The proposed model leads to a stable first-order system of equations, distinguishing itself from the canonical nonlinear Schrödinger equation. We have employed the space-time discontinuous Petrov-Galerkin finite element method to discretize the first-order system of equations. We present a stability analysis for both the elliptic and hyperbolic systems of equations and demonstrate the stability of the proposed model through several numerical examples on space-time meshes.
激光脉冲在波导中传播的修正Schrödinger方程的时空不连续Petrov-Galerkin有限元公式
在本文中,我们提出了一个修正的非线性Schrödinger方程来模拟脉冲在光波导中的传播。根据波导参数的不同,该模型可分为椭圆方程和双曲方程系统。提出的模型导致一个稳定的一阶方程组,区别于正则非线性Schrödinger方程。采用时空不连续的Petrov-Galerkin有限元方法对一阶方程组进行离散化。给出了椭圆型和双曲型方程系统的稳定性分析,并通过若干时空网格上的数值算例证明了所提模型的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信