Shape derivative of the Laplacian eigenvalue problem

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhengfang Zhang , Lulu Guo , Xiangjing Gao , Weifeng Chen , Xiaoliang Cheng
{"title":"Shape derivative of the Laplacian eigenvalue problem","authors":"Zhengfang Zhang ,&nbsp;Lulu Guo ,&nbsp;Xiangjing Gao ,&nbsp;Weifeng Chen ,&nbsp;Xiaoliang Cheng","doi":"10.1016/j.camwa.2025.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>The Laplacian eigenvalue problem with two different densities is investigated. By the squeeze theorem, the shape derivative of the least eigenvalue on the interface of two different density subdomains is derived. As an application, the minimization of the least eigenvalue with area constraint is considered. The shape derivative of the objective functional is applied as the velocity for the level set method to involve the interface. The numerical results validate that the proposed method is effective to capture the final optimized distribution of two different densities.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 127-147"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Laplacian eigenvalue problem with two different densities is investigated. By the squeeze theorem, the shape derivative of the least eigenvalue on the interface of two different density subdomains is derived. As an application, the minimization of the least eigenvalue with area constraint is considered. The shape derivative of the objective functional is applied as the velocity for the level set method to involve the interface. The numerical results validate that the proposed method is effective to capture the final optimized distribution of two different densities.
拉普拉斯特征值问题的形状导数
研究了具有两种不同密度的拉普拉斯特征值问题。利用挤压定理,导出了两个不同密度子域界面上最小特征值的形状导数。作为应用,考虑了面积约束下最小特征值的最小化问题。采用目标泛函的形状导数作为水平集法涉及界面的速度。数值结果表明,该方法能够有效地捕获两种不同密度的最终优化分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信