Oxygen Evolution Reaction Driven by Plasmon-Induced Hot Holes and S-Scheme Synergy in CuS@Polypyrrole Nanorods.

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Zanling Huang,Jintao Zhang,Qian Hu,Yaoyao Chen,Weiwei Zhu,Abebe Reda Woldu,Liangsheng Hu
{"title":"Oxygen Evolution Reaction Driven by Plasmon-Induced Hot Holes and S-Scheme Synergy in CuS@Polypyrrole Nanorods.","authors":"Zanling Huang,Jintao Zhang,Qian Hu,Yaoyao Chen,Weiwei Zhu,Abebe Reda Woldu,Liangsheng Hu","doi":"10.1021/acs.inorgchem.5c03573","DOIUrl":null,"url":null,"abstract":"Copper sulfide (CuS) exhibits strong near-infrared local surface plasmon resonance (LSPR) but suffers from severe photocorrosion in alkaline media. To address this, we engineered a core-shell CuS@polypyrrole (CuS@PPy) heterostructure on copper foam. The optimized CuS@PPy-600 achieves exceptional oxygen evolution reaction (OER) performance with overpotentials of 383 mV (dark) and 333 mV (light) at 100 mA·cm-2, 81 mV lower than pristine CuS under illumination and a Tafel slope of 16.9 mV·dec-1 under light. The PPy shell enables dual synergistic mechanisms: (i) S-scheme heterojunction facilitating charge separation via interfacial electron transfer (XPS: Cu 2p ↑ 0.3 eV, N 1s ↓ 0.4 eV), suppressing recombination; and (ii) plasmonic hot-hole extraction where PPy's conductive π-matrix injects LSPR-generated hot holes into OER sites, accounting for 71% of activity gain under >800 nm light. This synergy delivers >24 h stability (<5% decay) by preventing CuS corrosion while optimizing plasmonic energy utilization.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"67 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c03573","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Copper sulfide (CuS) exhibits strong near-infrared local surface plasmon resonance (LSPR) but suffers from severe photocorrosion in alkaline media. To address this, we engineered a core-shell CuS@polypyrrole (CuS@PPy) heterostructure on copper foam. The optimized CuS@PPy-600 achieves exceptional oxygen evolution reaction (OER) performance with overpotentials of 383 mV (dark) and 333 mV (light) at 100 mA·cm-2, 81 mV lower than pristine CuS under illumination and a Tafel slope of 16.9 mV·dec-1 under light. The PPy shell enables dual synergistic mechanisms: (i) S-scheme heterojunction facilitating charge separation via interfacial electron transfer (XPS: Cu 2p ↑ 0.3 eV, N 1s ↓ 0.4 eV), suppressing recombination; and (ii) plasmonic hot-hole extraction where PPy's conductive π-matrix injects LSPR-generated hot holes into OER sites, accounting for 71% of activity gain under >800 nm light. This synergy delivers >24 h stability (<5% decay) by preventing CuS corrosion while optimizing plasmonic energy utilization.
CuS@Polypyrrole纳米棒中等离子体诱导热洞驱动的析氧反应和s -方案协同作用。
硫化铜(cu)在碱性介质中表现出较强的近红外局部表面等离子体共振(LSPR),但受到严重的光腐蚀。为了解决这个问题,我们在铜泡沫上设计了一个核壳CuS@polypyrrole (CuS@PPy)异质结构。优化后的CuS@PPy-600在100 mA·cm-2下的过电位为383 mV(暗)和333 mV(光),比原始cu在光照下低81 mV,在光照下的塔菲斜率为16.9 mV·dec1,具有优异的析氧反应性能。PPy壳层实现了双重协同机制:(i) s型异质结通过界面电子转移促进电荷分离(XPS: Cu 2p↑0.3 eV, N 1s↓0.4 eV),抑制复合;(ii)等离子体热孔提取,PPy的导电π-矩阵将lspr产生的热孔注入OER位点,占> 800nm光下活性增益的71%。这种协同作用通过防止cu腐蚀,同时优化等离子体能量利用率,提供>24小时稳定性(衰减<5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信