Electron beam powder bed fusion additive manufacturing of Ti6Al4V alloy lattice structures: orientation-dependent fatigue strength and crack growth behaviour under compressive cyclic loading
{"title":"Electron beam powder bed fusion additive manufacturing of Ti6Al4V alloy lattice structures: orientation-dependent fatigue strength and crack growth behaviour under compressive cyclic loading","authors":"Yawen Huang, Zhan Wen Chen","doi":"10.1016/j.jmbbm.2025.107201","DOIUrl":null,"url":null,"abstract":"<div><div>Sufficiently high fatigue strength is required for lattices made using electron beam powder bed fusion (EBPBF) for hip implants and understanding the anisotropic fatigue behaviour of EBPBF lattices is necessary for implant design. In this work, the combined effects of loading direction (LD) and cell orientation of EBPBF-Ti6Al4V lattices on the fatigue strength of the structures under cyclic compressive loading have been studied. Simple cubic (SC) ([001]//LD, [011]//LD and [111]//LD) lattices with a relative density of 0.36 were EBPBF made, tested and examined. The fatigue strength of [001]//LD lattices has been determined to be ∼190 MPa at 5 × 10<sup>6</sup> cycles, ∼8 times higher than that of [011]//LD or [111]//LD lattices. The low fatigue strength of the non-[001]//LD lattices resulted from crack initiation readily occurring in the high tension locations, which are the top and bottom locations of each unit cell. Sideway growth of cracks leading to fracturing along (001) will be shown. This failure mechanism is absent in [001]//LD lattices and thus their fatigue strength is high. Examining the data in the literature has shown that fatigue strength values of all non-SC lattice structures are low, likely due to the same failure mechanism identified for non-[001]//LD SC lattices in this study.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"173 ","pages":"Article 107201"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125003170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sufficiently high fatigue strength is required for lattices made using electron beam powder bed fusion (EBPBF) for hip implants and understanding the anisotropic fatigue behaviour of EBPBF lattices is necessary for implant design. In this work, the combined effects of loading direction (LD) and cell orientation of EBPBF-Ti6Al4V lattices on the fatigue strength of the structures under cyclic compressive loading have been studied. Simple cubic (SC) ([001]//LD, [011]//LD and [111]//LD) lattices with a relative density of 0.36 were EBPBF made, tested and examined. The fatigue strength of [001]//LD lattices has been determined to be ∼190 MPa at 5 × 106 cycles, ∼8 times higher than that of [011]//LD or [111]//LD lattices. The low fatigue strength of the non-[001]//LD lattices resulted from crack initiation readily occurring in the high tension locations, which are the top and bottom locations of each unit cell. Sideway growth of cracks leading to fracturing along (001) will be shown. This failure mechanism is absent in [001]//LD lattices and thus their fatigue strength is high. Examining the data in the literature has shown that fatigue strength values of all non-SC lattice structures are low, likely due to the same failure mechanism identified for non-[001]//LD SC lattices in this study.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.