{"title":"Towards molecular evolutionary epigenomics with an expanded nucleotide code involving methylated bases.","authors":"Shinya Yoshida, Ikuo Uchiyama, Masaki Fukuyo, Mototsugu Kato, Desirazu N Rao, Mutsuko Konno, Shin-Ichi Fujiwara, Takeshi Azuma, Ichizo Kobayashi, Hirohisa Kishino","doi":"10.1093/dnares/dsaf025","DOIUrl":null,"url":null,"abstract":"<p><p>In molecular evolution analyses, genomic DNA sequence information is usually represented in the form of 4 bases (ATGC). However, research since the turn of the century has revealed the importance of epigenetic genome modifications, such as DNA base methylation, which can now be decoded using advanced sequence technologies. Here we provide an integrated framework for analyzing molecular evolution of nucleotide substitution, methylation, and demethylation using an expanded nucleotide code that incorporates different types of methylated bases. As a first attempt, we analyzed substitution rates between bases, both unmethylated and methylated ones. As the model methylomes, we chose those of Helicobacter pylori, an unicellular bacterium with the largest known repertoire of sequence-specific DNA methyltransferases. We found that the demethylation rates are remarkably high while the methylation rates are comparable with the substitution rates between unmethylated bases. We found that the ribosomal proteins known for sequence conservation showed high methylation and demethylation frequencies, whereas the genes for DNA methyltransferases themselves showed low methylation and demethylation frequencies compared to base substitution. This work represents the first step towards molecular evolutionary epigenomics, which, we expect, would contribute to understanding epigenome evolution.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsaf025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In molecular evolution analyses, genomic DNA sequence information is usually represented in the form of 4 bases (ATGC). However, research since the turn of the century has revealed the importance of epigenetic genome modifications, such as DNA base methylation, which can now be decoded using advanced sequence technologies. Here we provide an integrated framework for analyzing molecular evolution of nucleotide substitution, methylation, and demethylation using an expanded nucleotide code that incorporates different types of methylated bases. As a first attempt, we analyzed substitution rates between bases, both unmethylated and methylated ones. As the model methylomes, we chose those of Helicobacter pylori, an unicellular bacterium with the largest known repertoire of sequence-specific DNA methyltransferases. We found that the demethylation rates are remarkably high while the methylation rates are comparable with the substitution rates between unmethylated bases. We found that the ribosomal proteins known for sequence conservation showed high methylation and demethylation frequencies, whereas the genes for DNA methyltransferases themselves showed low methylation and demethylation frequencies compared to base substitution. This work represents the first step towards molecular evolutionary epigenomics, which, we expect, would contribute to understanding epigenome evolution.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.