Improved Gene Annotation of the Fungal Wheat Pathogen Zymoseptoria tritici Based on Combined Iso-Seq and RNA-Seq Evidence.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicolas Lapalu, Lucie Lamothe, Yohann Petit, Anne Genissel, Camille Delude, Alice Feurtey, Leen N Abraham, Dan Smith, Robert King, Alison Renwick, Melanie Appertet, Justine Sucher, Andrei S Steindorff, Stephen B Goodwin, Gert H J Kema, Igor V Grigoriev, James Hane, Jason Rudd, Eva Stukenbrock, Daniel Croll, Gabriel Scalliet, Marc-Henri Lebrun
{"title":"Improved Gene Annotation of the Fungal Wheat Pathogen <i>Zymoseptoria tritici</i> Based on Combined Iso-Seq and RNA-Seq Evidence.","authors":"Nicolas Lapalu, Lucie Lamothe, Yohann Petit, Anne Genissel, Camille Delude, Alice Feurtey, Leen N Abraham, Dan Smith, Robert King, Alison Renwick, Melanie Appertet, Justine Sucher, Andrei S Steindorff, Stephen B Goodwin, Gert H J Kema, Igor V Grigoriev, James Hane, Jason Rudd, Eva Stukenbrock, Daniel Croll, Gabriel Scalliet, Marc-Henri Lebrun","doi":"10.1094/MPMI-07-25-0077-TA","DOIUrl":null,"url":null,"abstract":"<p><p>Despite large omics datasets, the prediction of eukaryotic genes is still challenging. We have developed a new method to improve the prediction of eukaryotic genes and demonstrate its utility using the genome of the fungal wheat pathogen <i>Zymoseptoria tritici</i>. From 10,933 to 13,260 genes were predicted by four previous annotations, but only one third were identical. A novel bioinformatics suite, InGenAnnot, was developed to improve <i>Z. tritici</i> gene annotation using Iso-Seq full-length transcript sequences. The best gene models were selected among different <i>ab initio</i> gene predictions, according to transcript and protein evidence. Overall, 13,414 re-annotated gene models (RGMs) were predicted, improving previous annotations. Iso-Seq transcripts outlined 5' and 3' UTRs for 73% of the RGMs, and alternative transcripts mainly due to intron retention. Our results showed that the combination of different <i>ab initio</i> gene predictions and evidence-driven curation improved gene annotation of a eukaryotic genome. It also provided new insights into the transcriptional landscape of this fungus.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-07-25-0077-TA","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite large omics datasets, the prediction of eukaryotic genes is still challenging. We have developed a new method to improve the prediction of eukaryotic genes and demonstrate its utility using the genome of the fungal wheat pathogen Zymoseptoria tritici. From 10,933 to 13,260 genes were predicted by four previous annotations, but only one third were identical. A novel bioinformatics suite, InGenAnnot, was developed to improve Z. tritici gene annotation using Iso-Seq full-length transcript sequences. The best gene models were selected among different ab initio gene predictions, according to transcript and protein evidence. Overall, 13,414 re-annotated gene models (RGMs) were predicted, improving previous annotations. Iso-Seq transcripts outlined 5' and 3' UTRs for 73% of the RGMs, and alternative transcripts mainly due to intron retention. Our results showed that the combination of different ab initio gene predictions and evidence-driven curation improved gene annotation of a eukaryotic genome. It also provided new insights into the transcriptional landscape of this fungus.

基于Iso-Seq和RNA-Seq联合证据的小麦真菌致病菌酵母酵母基因注释改进
尽管有大量的组学数据集,真核基因的预测仍然具有挑战性。我们开发了一种新的方法来提高真核基因的预测,并利用小麦真菌病原菌酵母的基因组证明了它的实用性。从10933到13260个基因,之前的四个注释预测,但只有三分之一是相同的。开发了一种新的生物信息学套件,InGenAnnot,用于改进使用Iso-Seq全长转录序列的小麦Z.基因注释。根据转录和蛋白质证据,从不同的从头计算基因预测中选择最佳的基因模型。总体而言,预测了13414个重新注释的基因模型(RGMs),改进了之前的注释。Iso-Seq转录本为73%的rgm列出了5‘和3’的utr,其他转录本主要是由于内含子保留。我们的研究结果表明,结合不同的从头计算基因预测和证据驱动的策画改进了真核生物基因组的基因注释。它也为这种真菌的转录景观提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信