Wenqing Zhu, Ye Liu, Xiaoxiao Chen, Liling Qian, Wei Wang, Leilei Zou, Yiliang Lu, Rui Liu
{"title":"Long-Term Monochromatic Light Exposure Does Not Alter Modular Chromatic Representation in the Visual Cortex of Rhesus Monkeys.","authors":"Wenqing Zhu, Ye Liu, Xiaoxiao Chen, Liling Qian, Wei Wang, Leilei Zou, Yiliang Lu, Rui Liu","doi":"10.1007/s12264-025-01510-4","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term exposure to monochromatic light during early life has been shown to significantly impact the development of myopia. However, its effect on color processing in the visual cortex remains unclear. In this study, we investigated the effects of different lighting conditions on the functional organization of color representation in the visual cortical areas V1, V2, and V4 of rhesus monkeys raised under long-wave and short-wave monochromatic illumination for four years. Using cytochrome oxidase staining and intrinsic signal optical imaging, we found that the sizes, densities, and response strengths of cortical color domains in V1, V2, and V4 were consistent across illumination conditions. In addition, the cortical distances between specific hue response patches did not significantly differ among the groups. These findings suggested that long-term monochromatic illumination does not alter the spatial organization or functional properties of color domains in the visual cortex of rhesus monkeys. This research provides new insights into the resilience of the visual system's chromatic representation despite altered lighting conditions in early life.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01510-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term exposure to monochromatic light during early life has been shown to significantly impact the development of myopia. However, its effect on color processing in the visual cortex remains unclear. In this study, we investigated the effects of different lighting conditions on the functional organization of color representation in the visual cortical areas V1, V2, and V4 of rhesus monkeys raised under long-wave and short-wave monochromatic illumination for four years. Using cytochrome oxidase staining and intrinsic signal optical imaging, we found that the sizes, densities, and response strengths of cortical color domains in V1, V2, and V4 were consistent across illumination conditions. In addition, the cortical distances between specific hue response patches did not significantly differ among the groups. These findings suggested that long-term monochromatic illumination does not alter the spatial organization or functional properties of color domains in the visual cortex of rhesus monkeys. This research provides new insights into the resilience of the visual system's chromatic representation despite altered lighting conditions in early life.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.