{"title":"On astrocyte-neuron interactions: Broad insights from the striatum.","authors":"Baljit S Khakh","doi":"10.1016/j.neuron.2025.08.009","DOIUrl":null,"url":null,"abstract":"<p><p>A long-standing question in biology and medicine concerns how astrocytes influence neurons. Here, progress concerning how astrocytes affect neurons and neural circuits is summarized by focusing on data and concepts from studies of the striatum, which has emerged as a model nucleus. Mechanisms broadly applicable across brain regions and disorders are emphasized, and knowledge gaps are described. Experiments spanning multiple scales of biology show that astrocytes regulate neural circuits by virtue of homeostatic signaling and through astrocyte-neuron interactions. During disease, astrocytes contribute to nervous system malfunction in context-specific ways through failures of normal functions and the development of maladaptive responses. As ideally positioned endogenous cellular neuromodulators, astrocytes can be targeted for strategies to regulate neural circuits in brain disorders. After a historically slow start for the field, astrocyte-neuron interactions are now recognized as consequential for physiology and behavior, critically involved in pathophysiology, and exploitable in disease.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3079-3107"},"PeriodicalIF":15.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.08.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A long-standing question in biology and medicine concerns how astrocytes influence neurons. Here, progress concerning how astrocytes affect neurons and neural circuits is summarized by focusing on data and concepts from studies of the striatum, which has emerged as a model nucleus. Mechanisms broadly applicable across brain regions and disorders are emphasized, and knowledge gaps are described. Experiments spanning multiple scales of biology show that astrocytes regulate neural circuits by virtue of homeostatic signaling and through astrocyte-neuron interactions. During disease, astrocytes contribute to nervous system malfunction in context-specific ways through failures of normal functions and the development of maladaptive responses. As ideally positioned endogenous cellular neuromodulators, astrocytes can be targeted for strategies to regulate neural circuits in brain disorders. After a historically slow start for the field, astrocyte-neuron interactions are now recognized as consequential for physiology and behavior, critically involved in pathophysiology, and exploitable in disease.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.