Regular Exercise with Panax Ginseng Supplementation Attenuates Arsenic-Induced Muscular Weakness and Neurobehavioral Changes in Mice.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Sharmin Akter Beauty, Sharon Jahan Sarder, Jakir Hossain, Nesar Uddin, Osman Goni, Rajoana Karim Rimi, Shakhawoat Hossain, Farjana Nikkon, Seiichiro Himeno, Khaled Hossain, Zahangir Alam Saud
{"title":"Regular Exercise with Panax Ginseng Supplementation Attenuates Arsenic-Induced Muscular Weakness and Neurobehavioral Changes in Mice.","authors":"Sharmin Akter Beauty, Sharon Jahan Sarder, Jakir Hossain, Nesar Uddin, Osman Goni, Rajoana Karim Rimi, Shakhawoat Hossain, Farjana Nikkon, Seiichiro Himeno, Khaled Hossain, Zahangir Alam Saud","doi":"10.1007/s12640-025-00756-0","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) contamination of groundwater in some parts of Bangladesh has become a major threat to human health. Chronic exposure to As leads to anxiety development, memory impairment, and muscle weakness in humans and experimental animals. Panax ginseng (PG) is an herb utilized for multiple health-related applications. Furthermore, regular exercise (Ex) can reduce the risk of various diseases, and is also effective against heavy metal-associated neurotoxicity. Swiss albino mice were divided into five groups (n = 6) to evaluate the protective effects of Ex and PG (50 mg/kg body weight) supplementation against As-induced (10 mg/kg body weight) muscular weakness and neurobehavioral Changes for 60 days. Mice exposed to As showed weaker muscular strength, impaired memory and increased anxiety-like behavior along with the alteration of biochemical parameters related muscular weakness and neurobehavioral changes compared to control mice. However, As + Ex + PG-exposed mice showed significantly (p < 0.05) better performances in all behavioral tests compared to mice exposed to As alone. Additionally, compared to As-exposed mice, As + Ex + PG-exposed mice showed significantly improved (p < 0.05) activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), superoxide dismutase (SOD), and reduced glutathione reductase (rGR) in brain, while serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were reduced. Furthermore, levels of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and interleukin-10 (IL-10) levels were increased, while interleukin-6 (IL-6) levels were decreased in brain tissue of As + Ex + PG-exposed mice compared to As-exposed mice. The results of this study suggest that Ex with PG supplementation can attenuate As-induced muscle weakness, cognitive disorder and anxiety development, possibly through the up-regulation of the Nrf2-HO-1 pathway in the As-exposure mice.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 5","pages":"34"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00756-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic (As) contamination of groundwater in some parts of Bangladesh has become a major threat to human health. Chronic exposure to As leads to anxiety development, memory impairment, and muscle weakness in humans and experimental animals. Panax ginseng (PG) is an herb utilized for multiple health-related applications. Furthermore, regular exercise (Ex) can reduce the risk of various diseases, and is also effective against heavy metal-associated neurotoxicity. Swiss albino mice were divided into five groups (n = 6) to evaluate the protective effects of Ex and PG (50 mg/kg body weight) supplementation against As-induced (10 mg/kg body weight) muscular weakness and neurobehavioral Changes for 60 days. Mice exposed to As showed weaker muscular strength, impaired memory and increased anxiety-like behavior along with the alteration of biochemical parameters related muscular weakness and neurobehavioral changes compared to control mice. However, As + Ex + PG-exposed mice showed significantly (p < 0.05) better performances in all behavioral tests compared to mice exposed to As alone. Additionally, compared to As-exposed mice, As + Ex + PG-exposed mice showed significantly improved (p < 0.05) activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), superoxide dismutase (SOD), and reduced glutathione reductase (rGR) in brain, while serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were reduced. Furthermore, levels of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and interleukin-10 (IL-10) levels were increased, while interleukin-6 (IL-6) levels were decreased in brain tissue of As + Ex + PG-exposed mice compared to As-exposed mice. The results of this study suggest that Ex with PG supplementation can attenuate As-induced muscle weakness, cognitive disorder and anxiety development, possibly through the up-regulation of the Nrf2-HO-1 pathway in the As-exposure mice.

定期运动加人参可减轻小鼠砷引起的肌肉无力和神经行为改变。
孟加拉国部分地区地下水的砷污染已成为对人类健康的主要威胁。长期暴露于砷会导致人类和实验动物出现焦虑、记忆障碍和肌肉无力。人参(PG)是一种用于多种健康相关应用的草药。此外,有规律的运动(Ex)可以降低患各种疾病的风险,对重金属相关的神经毒性也有效。将瑞士白化病小鼠分为5组(n = 6),观察添加Ex和PG (50 mg/kg体重)对砷诱导(10 mg/kg体重)肌肉无力和神经行为改变的保护作用,为期60 d。与对照小鼠相比,暴露于As的小鼠表现出肌肉力量减弱、记忆受损、焦虑样行为增加以及与肌肉无力和神经行为改变相关的生化参数的改变。然而,As + Ex + pg暴露小鼠显示(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信