Claudèle Lemay-St-Denis, Stella Cellier-Goetghebeur, Maxime St-Aubin, Keigo Ide, Janine N Copp, Soichiro Tsuda, Nir Ben-Tal, Rachel Kolodny, Joelle N Pelletier
{"title":"From Binding to Catalysis: Emergence of a Rudimentary Enzyme Conferring Intrinsic Antibiotic Resistance.","authors":"Claudèle Lemay-St-Denis, Stella Cellier-Goetghebeur, Maxime St-Aubin, Keigo Ide, Janine N Copp, Soichiro Tsuda, Nir Ben-Tal, Rachel Kolodny, Joelle N Pelletier","doi":"10.1093/molbev/msaf215","DOIUrl":null,"url":null,"abstract":"<p><p>How does enzymatic activity emerge? To shed light on this fundamental question, we study type B dihydrofolate reductases (DfrB), which were discovered for their role in antibiotic resistance. These rudimentary enzymes are evolutionarily distinct from the ubiquitous, monomeric FolA dihydrofolate reductases targeted by the antibiotic trimethoprim. DfrB is unique: it homotetramerizes to form a highly symmetrical central tunnel that accommodates its substrates in close proximity and the right orientation, thus promoting the metabolically essential production of tetrahydrofolate. It is the only known enzyme built from the ancient Src Homology 3 fold, typically a binding module. Strikingly, by studying the evolution of this enzyme family, we observe that no active-site residues are conserved across catalytically active homologs. Integrating experimental and computational analyses, we identify an intricate relationship between homotetramerization and catalytic activity, where formation of a tunnel featuring positive electrostatic potential proves to be a powerful predictor of activity. We demonstrate that the DfrB enzymes have not evolved in response to the synthetic antibiotic to which they confer strong resistance, and propose that DfrB domains evolved the capacity for rudimentary catalysis from a binding capacity. That (rudimentary) catalysis can emerge from the homotetramerization of a binding domain, and that it has been recently recruited by pathogenic bacteria, manifests the opportunistic nature of evolution.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf215","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
How does enzymatic activity emerge? To shed light on this fundamental question, we study type B dihydrofolate reductases (DfrB), which were discovered for their role in antibiotic resistance. These rudimentary enzymes are evolutionarily distinct from the ubiquitous, monomeric FolA dihydrofolate reductases targeted by the antibiotic trimethoprim. DfrB is unique: it homotetramerizes to form a highly symmetrical central tunnel that accommodates its substrates in close proximity and the right orientation, thus promoting the metabolically essential production of tetrahydrofolate. It is the only known enzyme built from the ancient Src Homology 3 fold, typically a binding module. Strikingly, by studying the evolution of this enzyme family, we observe that no active-site residues are conserved across catalytically active homologs. Integrating experimental and computational analyses, we identify an intricate relationship between homotetramerization and catalytic activity, where formation of a tunnel featuring positive electrostatic potential proves to be a powerful predictor of activity. We demonstrate that the DfrB enzymes have not evolved in response to the synthetic antibiotic to which they confer strong resistance, and propose that DfrB domains evolved the capacity for rudimentary catalysis from a binding capacity. That (rudimentary) catalysis can emerge from the homotetramerization of a binding domain, and that it has been recently recruited by pathogenic bacteria, manifests the opportunistic nature of evolution.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.