Convolutional neural network-derived neurofibrillary tangle classifiers: Investigative tools to identify maturation levels and explore post-translational modifications using laser capture microdissection coupled mass spectrometry.

IF 3 3区 医学 Q2 CLINICAL NEUROLOGY
Couger Jimenez Jaramillo, Drew Nedderman, Erpan Ahat, John L McElwee, Michael Soper, Darryl Ballard, Ling Zhang, Kelly M Credille, Gary Heady, Eric D Hsi, Michael E Hodsdon, Timothy R Holzer, Aaron M Gruver, William T Harrison
{"title":"Convolutional neural network-derived neurofibrillary tangle classifiers: Investigative tools to identify maturation levels and explore post-translational modifications using laser capture microdissection coupled mass spectrometry.","authors":"Couger Jimenez Jaramillo, Drew Nedderman, Erpan Ahat, John L McElwee, Michael Soper, Darryl Ballard, Ling Zhang, Kelly M Credille, Gary Heady, Eric D Hsi, Michael E Hodsdon, Timothy R Holzer, Aaron M Gruver, William T Harrison","doi":"10.1093/jnen/nlaf108","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTM) of tau are implicated in Alzheimer disease (AD) progression and are established biomarkers in cerebrospinal fluid and plasma; however, the labor-intensive nature of conventional proteomics limits their investigation in histology-specific contexts. We describe the findings of an artificial intelligence-guided laser capture microdissection (LCM) pipeline for harvesting neurofibrillary tangles (NFTs) by maturation level into pretangles (pre-NFTs), mature tangles (iNFTs), and ghost tangles (eNFTs) using 38 cases obtained from 2 independent biobanks. We evaluated the performance characteristics of proprietary machine learning algorithms for the subclassification of these NFT categories in anti-pTau217-stained whole slide images of entorhinal cortex, hippocampus, frontal, and parietal cortex sections. Overall precision/recall/F1 scores were highest for Classifier A (0.6/0.46/0.5). The best performing algorithm was used to guide LCM capture and inform NFT enrichment. Targeted proteomics on tau signature peptides (pTau181, pTau217, and TauMTBR) was performed on approximately 1250 NFT collections. The results demonstrated that their abundance increased from pretangles to mature tangles (∼2-11-fold increase), and that this was followed by a sharp reduction in ghost tangles (∼3-116-fold decrease), with pTau217 showing the most drastic change. Pathologist-trained NFT classifiers represent an objective albeit imperfect means to enrich specific morphologic forms permitting coupled LCM-MS (mass spectrometry) to investigate AD-associated PTM.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlaf108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Post-translational modifications (PTM) of tau are implicated in Alzheimer disease (AD) progression and are established biomarkers in cerebrospinal fluid and plasma; however, the labor-intensive nature of conventional proteomics limits their investigation in histology-specific contexts. We describe the findings of an artificial intelligence-guided laser capture microdissection (LCM) pipeline for harvesting neurofibrillary tangles (NFTs) by maturation level into pretangles (pre-NFTs), mature tangles (iNFTs), and ghost tangles (eNFTs) using 38 cases obtained from 2 independent biobanks. We evaluated the performance characteristics of proprietary machine learning algorithms for the subclassification of these NFT categories in anti-pTau217-stained whole slide images of entorhinal cortex, hippocampus, frontal, and parietal cortex sections. Overall precision/recall/F1 scores were highest for Classifier A (0.6/0.46/0.5). The best performing algorithm was used to guide LCM capture and inform NFT enrichment. Targeted proteomics on tau signature peptides (pTau181, pTau217, and TauMTBR) was performed on approximately 1250 NFT collections. The results demonstrated that their abundance increased from pretangles to mature tangles (∼2-11-fold increase), and that this was followed by a sharp reduction in ghost tangles (∼3-116-fold decrease), with pTau217 showing the most drastic change. Pathologist-trained NFT classifiers represent an objective albeit imperfect means to enrich specific morphologic forms permitting coupled LCM-MS (mass spectrometry) to investigate AD-associated PTM.

卷积神经网络衍生的神经原纤维缠结分类器:使用激光捕获显微解剖耦合质谱法识别成熟水平和探索翻译后修饰的研究工具。
tau蛋白的翻译后修饰(PTM)与阿尔茨海默病(AD)的进展有关,是脑脊液和血浆中已确定的生物标志物;然而,传统蛋白质组学的劳动密集型性质限制了它们在组织学特异性背景下的研究。我们描述了人工智能引导的激光捕获微解剖(LCM)管道的发现,该管道通过成熟水平收集神经原纤维缠结(nft),分为前缠结(prenft),成熟缠结(iNFTs)和鬼缠结(eNFTs),使用了来自2个独立生物库的38例病例。我们在抗ptau217染色的内嗅皮质、海马、额叶和顶叶皮质切片的整张幻灯片图像中评估了专有机器学习算法对这些NFT类别进行亚分类的性能特征。分类器A的整体准确率/召回率/F1得分最高(0.6/0.46/0.5)。使用性能最好的算法指导LCM捕获并通知NFT富集。对大约1250份NFT样本进行了tau特征肽(pTau181、pTau217和TauMTBR)的靶向蛋白质组学研究。结果表明,它们的丰度从预缠结增加到成熟缠结(增加~ 2-11倍),然后是鬼缠结的急剧减少(减少~ 3-116倍),其中pTau217表现出最剧烈的变化。病理学家训练的NFT分类器代表了一种客观的,尽管不完善的手段,以丰富特定的形态形式,允许耦合LCM-MS(质谱)来研究ad相关的PTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
6.20%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信