{"title":"Evolutionary and Functional Significance of ShPP2C1 in the Parasitic Life Strategy of Striga.","authors":"Sotaro Katagiri, Daisuke Fukuhara, Keisuke Fujiyama, Hijiri Fujioka, Yukihiro Sugimoto, Masanori Okamoto","doi":"10.1093/jxb/eraf412","DOIUrl":null,"url":null,"abstract":"<p><p>Parasitic plants have evolved specialized mechanisms to extract water and nutrients from their hosts, often causing severe agricultural losses. Striga hermonthica, a member of the Orobanchaceae family, exhibits a unique adaptation in the abscisic acid (ABA) signaling pathway, which enhances its growth efficiency during parasitism. Striga hermonthica protein phosphatase 2C (ShPP2C1) is a negative regulator of ABA signaling but, unlike typical PP2Cs, is not inhibited by ABA receptors (PYLs). Because of ShPP2C1, Striga hermonthica shows low ABA sensitivity and high transpiration, facilitating resource uptake from the host. To determine whether similar PP2Cs are conserved in other parasitic Orobanchaceae, we performed a phylogenetic analysis using public sequence data, revealing that ShPP2C1 is unique to the genus Striga genus. Furthermore, in vitro phosphatase assay revealed specific amino acid residues responsible for disrupting the inhibition by PYLs. Structural comparisons between ShPP2C1 and Arabidopsis thaliana ABI1 showed that the lack of interaction to PYLs is due to steric hindrance from a combination of amino acid substitutions. These findings provide new insight into the molecular basis of Striga's parasitic strategy.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf412","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic plants have evolved specialized mechanisms to extract water and nutrients from their hosts, often causing severe agricultural losses. Striga hermonthica, a member of the Orobanchaceae family, exhibits a unique adaptation in the abscisic acid (ABA) signaling pathway, which enhances its growth efficiency during parasitism. Striga hermonthica protein phosphatase 2C (ShPP2C1) is a negative regulator of ABA signaling but, unlike typical PP2Cs, is not inhibited by ABA receptors (PYLs). Because of ShPP2C1, Striga hermonthica shows low ABA sensitivity and high transpiration, facilitating resource uptake from the host. To determine whether similar PP2Cs are conserved in other parasitic Orobanchaceae, we performed a phylogenetic analysis using public sequence data, revealing that ShPP2C1 is unique to the genus Striga genus. Furthermore, in vitro phosphatase assay revealed specific amino acid residues responsible for disrupting the inhibition by PYLs. Structural comparisons between ShPP2C1 and Arabidopsis thaliana ABI1 showed that the lack of interaction to PYLs is due to steric hindrance from a combination of amino acid substitutions. These findings provide new insight into the molecular basis of Striga's parasitic strategy.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.