Tanvi Premchandani, Mohammad Qutub, Amol Tatode, Milind Umekar, Jayshree Taksande, Ujban Md Hussain, Sameer R Khidkikar
{"title":"Engineering CAR-T cells for solid tumors: bispecific antigen targeting, tumor microenvironment modulation, and toxicity control.","authors":"Tanvi Premchandani, Mohammad Qutub, Amol Tatode, Milind Umekar, Jayshree Taksande, Ujban Md Hussain, Sameer R Khidkikar","doi":"10.1007/s12026-025-09687-6","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematologic malignancies, yet its efficacy in solid tumors remains limited due to antigen heterogeneity, immunosuppressive tumor microenvironments, and therapy-associated toxicities. This review highlights advances across CAR-T generations, emphasizing co-stimulatory domains and cytokine-armed TRUCKs to enhance persistence and function. Viral (lentiviral, gamma-retroviral) and non-viral (CRISPR, transposons, mRNA electroporation) delivery systems are compared for efficiency, safety, and scalability, with CRISPR enabling multiplex edits for improved specificity. Dual-targeting CARs counter antigen heterogeneity, while hypoxia-inducible and SynNotch CARs restrict activity to tumor sites. Chemokine receptor engineering enhances infiltration, and armored CARs secreting IL-12 or checkpoint inhibitors remodel the TME. Nanobody-based CAR-T cells further expand design versatility, offering improved stability, tumor penetration, and reduced immunogenicity compared with single-chain variable fragment constructs. Safety innovations include iCasp9 Suicide switches, dasatinib-controlled activation, and cytokine blockade. Clinical trials of bispecific CAR-Ts show promise, yet challenges Like manufacturing complexity and off-target effects persist. Integrating AI-driven design and Personalized neoantigen targeting may unlock CAR-T 2.0 for solid tumors, pending scalable production and regulatory harmonization.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"135"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-025-09687-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematologic malignancies, yet its efficacy in solid tumors remains limited due to antigen heterogeneity, immunosuppressive tumor microenvironments, and therapy-associated toxicities. This review highlights advances across CAR-T generations, emphasizing co-stimulatory domains and cytokine-armed TRUCKs to enhance persistence and function. Viral (lentiviral, gamma-retroviral) and non-viral (CRISPR, transposons, mRNA electroporation) delivery systems are compared for efficiency, safety, and scalability, with CRISPR enabling multiplex edits for improved specificity. Dual-targeting CARs counter antigen heterogeneity, while hypoxia-inducible and SynNotch CARs restrict activity to tumor sites. Chemokine receptor engineering enhances infiltration, and armored CARs secreting IL-12 or checkpoint inhibitors remodel the TME. Nanobody-based CAR-T cells further expand design versatility, offering improved stability, tumor penetration, and reduced immunogenicity compared with single-chain variable fragment constructs. Safety innovations include iCasp9 Suicide switches, dasatinib-controlled activation, and cytokine blockade. Clinical trials of bispecific CAR-Ts show promise, yet challenges Like manufacturing complexity and off-target effects persist. Integrating AI-driven design and Personalized neoantigen targeting may unlock CAR-T 2.0 for solid tumors, pending scalable production and regulatory harmonization.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.