The Sef1 transcription factor interacts with promoters of riboflavin structural genes in Candida famata.

IF 2.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Serhii Romanov, Oleksii Lyzak, Andriy Sibirny, Kostyantyn Dmytruk
{"title":"The Sef1 transcription factor interacts with promoters of riboflavin structural genes in Candida famata.","authors":"Serhii Romanov, Oleksii Lyzak, Andriy Sibirny, Kostyantyn Dmytruk","doi":"10.1093/femsyr/foaf055","DOIUrl":null,"url":null,"abstract":"<p><p>Riboflavin (RF, vitamin B2) serves as a precursor for the flavin coenzymes FAD and FMN, which are involved in numerous redox reactions in cells. RF is produced on an industrial scale. The yeast Candida famata overproduces RF under iron-starvation conditions, and mutants have been isolated that accumulate large amounts of RF. Overexpression of Sef1, the transcription factor of the zinc cluster family, increases RF production in C. famata; however, the specific mechanism remains unknown. Here, we report that SEF1 expression is upregulated under iron deficiency. We developed a yeast one-hybrid system based on the yeast Saccharomyces cerevisiae to study the role of Sef1 in regulation of RF biosynthesis. We found that Sef1 activates the promoters of the RIB1, RIB3, RIB5, RIB6, and RIB7 genes. Additionally, SEF1 was shown to undergo autoregulation. For the RIB1 promoter, a Sef1-binding sequence has been identified. The ability of Sef1 to activate RIB genes expression was further validated in the native C. famata system.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Riboflavin (RF, vitamin B2) serves as a precursor for the flavin coenzymes FAD and FMN, which are involved in numerous redox reactions in cells. RF is produced on an industrial scale. The yeast Candida famata overproduces RF under iron-starvation conditions, and mutants have been isolated that accumulate large amounts of RF. Overexpression of Sef1, the transcription factor of the zinc cluster family, increases RF production in C. famata; however, the specific mechanism remains unknown. Here, we report that SEF1 expression is upregulated under iron deficiency. We developed a yeast one-hybrid system based on the yeast Saccharomyces cerevisiae to study the role of Sef1 in regulation of RF biosynthesis. We found that Sef1 activates the promoters of the RIB1, RIB3, RIB5, RIB6, and RIB7 genes. Additionally, SEF1 was shown to undergo autoregulation. For the RIB1 promoter, a Sef1-binding sequence has been identified. The ability of Sef1 to activate RIB genes expression was further validated in the native C. famata system.

Abstract Image

Abstract Image

Abstract Image

假丝酵母中Sef1转录因子与核黄素结构基因启动子的相互作用。
核黄素(维生素B2)作为黄素辅酶FAD和FMN的前体,参与细胞中的许多氧化还原反应。核黄素是以工业规模生产的。酵母假丝酵母在缺铁条件下过量产生核黄素,并且已经分离出积累大量核黄素的突变体。锌簇家族的转录因子Sef1的过表达增加了C. famata中核黄素的产生,但其具体机制尚不清楚。在这里,我们报道了缺铁条件下SEF1的表达上调。为了研究Sef1在核黄素生物合成中的调控作用,我们以酿酒酵母为原料建立了酵母单杂交系统。我们发现Sef1激活了RIB1、RIB3、RIB5、RIB6和RIB7基因的启动子。此外,SEF1被证明可以进行自动调节。对于RIB1启动子,已经确定了一个Sef1结合序列。Sef1激活RIB基因表达的能力在天然法玛塔系统中得到进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信