The transcription factor CgHaa1 plays a role in virulence of the pathogenic yeast Candida glabrata.

IF 2.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sara Barbosa Salazar, Nuno Alexandre Pedro, Sónia Silva, Dalila Mil-Homens, Andreia Pimenta, Marcin Wlodarczyk, Aleksandra Szwed-Georgiou, Kaname Sasamoto, Hiroji Chibana, Sylwia Michlewska, Karolina Rudnicka, Arsénio Fialho, Nuno Pereira Mira
{"title":"The transcription factor CgHaa1 plays a role in virulence of the pathogenic yeast Candida glabrata.","authors":"Sara Barbosa Salazar, Nuno Alexandre Pedro, Sónia Silva, Dalila Mil-Homens, Andreia Pimenta, Marcin Wlodarczyk, Aleksandra Szwed-Georgiou, Kaname Sasamoto, Hiroji Chibana, Sylwia Michlewska, Karolina Rudnicka, Arsénio Fialho, Nuno Pereira Mira","doi":"10.1093/femsyr/foaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Candida glabrata is a prominent causative agent of mucosal and disseminated human infections. Part of the success of C. glabrata as a human pathogen relies on its adherence capacity and ability to tolerate/surpass the activity of immune cells. Herein we describe the involvement of the transcription factor CgHaa1 and of its regulated genes CgAWP12, CgAWP13, CAGL0H07469 g and CAGL0K10164 g in adherence of C. glabrata to vaginal cells in the presence of acetic acid, an organic acid usually found in this niche due to the activity of commensal bacteria. CgHaa1 and its target genes CgAWP12, CAGL0K10164 g and CAGL0E03740 g were also found to significantly increase C. glabrata-induced killing of the model wax moth Galleria mellonela, in part by modulating the interaction of the yeasts with the larvae's immune cells. Finally, we show that CgHAA1 expression reduces ingestion and subsequent killing of C. glabrata cells by THP-1 human macrophages. This demonstrated role of CgHaa1 in C. glabrata virulence and interaction with immune cells expands the biological role of this regulator positioning it (and its target genes) as a potential interesting candidate target for new therapies focused on reducing the burden of candidiasis.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Candida glabrata is a prominent causative agent of mucosal and disseminated human infections. Part of the success of C. glabrata as a human pathogen relies on its adherence capacity and ability to tolerate/surpass the activity of immune cells. Herein we describe the involvement of the transcription factor CgHaa1 and of its regulated genes CgAWP12, CgAWP13, CAGL0H07469 g and CAGL0K10164 g in adherence of C. glabrata to vaginal cells in the presence of acetic acid, an organic acid usually found in this niche due to the activity of commensal bacteria. CgHaa1 and its target genes CgAWP12, CAGL0K10164 g and CAGL0E03740 g were also found to significantly increase C. glabrata-induced killing of the model wax moth Galleria mellonela, in part by modulating the interaction of the yeasts with the larvae's immune cells. Finally, we show that CgHAA1 expression reduces ingestion and subsequent killing of C. glabrata cells by THP-1 human macrophages. This demonstrated role of CgHaa1 in C. glabrata virulence and interaction with immune cells expands the biological role of this regulator positioning it (and its target genes) as a potential interesting candidate target for new therapies focused on reducing the burden of candidiasis.

转录因子chaa1在致病性念珠菌的毒力中起作用。
光念珠菌是粘膜和播散性人类感染的主要病原体。光棘球蚴作为一种人类病原体的成功部分依赖于其粘附能力和耐受/超越免疫细胞活性的能力。在本文中,我们描述了转录因子CgHaa1及其调控基因CgAWP12、CgAWP13、CAGL0H07469 g和CAGL0K10164 g在醋酸存在的情况下参与了C. glabrata粘附在阴道细胞上的过程。醋酸是一种有机酸,由于共生菌的活性,通常在这个生态位中发现。研究还发现,CgHaa1及其靶基因CgAWP12、CAGL0K10164 g和CAGL0E03740 g也能显著提高C. glabrata诱导的蜡蛾模型的杀伤能力,部分原因是通过调节酵母与蜡蛾幼虫免疫细胞的相互作用。最后,我们发现chaa1的表达减少了THP-1人巨噬细胞对C. glabrata细胞的摄食和随后的杀伤。这证实了chaa1在光秃念珠菌毒力和与免疫细胞相互作用中的作用,扩大了该调节因子的生物学作用,将其(及其靶基因)定位为专注于减轻念珠菌病负担的新疗法的潜在有趣候选靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信