Genetic architecture and analysis practices of circulating metabolites in the NHLBI Trans-Omics for Precision Medicine Program.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Nannan Wang, Franklin P Ockerman, Laura Y Zhou, Megan L Grove, Taryn Alkis, John Barnard, Russell P Bowler, Clary B Clish, Shinhye Chung, Emily Drzymalla, Anne M Evans, Nora Franceschini, Robert E Gerszten, Madeline G Gillman, Scott R Hutton, Rachel S Kelly, Charles Kooperberg, Martin G Larson, Jessica Lasky-Su, Deborah A Meyers, Prescott G Woodruff, Alexander P Reiner, Stephen S Rich, Jerome I Rotter, Edwin K Silverman, Ramachandran S Vasan, Scott T Weiss, Kari E Wong, Alexis C Wood, Lang Wu, Ronit Yarden, Thomas W Blackwell, Albert V Smith, Han Chen, Laura M Raffield, Bing Yu
{"title":"Genetic architecture and analysis practices of circulating metabolites in the NHLBI Trans-Omics for Precision Medicine Program.","authors":"Nannan Wang, Franklin P Ockerman, Laura Y Zhou, Megan L Grove, Taryn Alkis, John Barnard, Russell P Bowler, Clary B Clish, Shinhye Chung, Emily Drzymalla, Anne M Evans, Nora Franceschini, Robert E Gerszten, Madeline G Gillman, Scott R Hutton, Rachel S Kelly, Charles Kooperberg, Martin G Larson, Jessica Lasky-Su, Deborah A Meyers, Prescott G Woodruff, Alexander P Reiner, Stephen S Rich, Jerome I Rotter, Edwin K Silverman, Ramachandran S Vasan, Scott T Weiss, Kari E Wong, Alexis C Wood, Lang Wu, Ronit Yarden, Thomas W Blackwell, Albert V Smith, Han Chen, Laura M Raffield, Bing Yu","doi":"10.1016/j.ajhg.2025.08.022","DOIUrl":null,"url":null,"abstract":"<p><p>Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. From our comparison of multiple methods, we provided a set of reasonable strategies for outlier and imputation handling to process metabolite data and show that inverse normalization by study and half-minimum imputation provide mostly similar results for pooled or meta-analysis. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole-genome sequencing data from 16,359 individuals passing the quality-control filters and discovered 1,775 independent loci associated with 667 metabolites. Among 160 unreported locus-metabolite pairs, we identified associations with loci locating within previously implicated metabolite-associated genes, as well as associations with loci locating in genes such as GAB3 and VSIG4 (located on the X chromosome) that may play a role in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, which were located in well-known metabolic genes such as FADS2, D2HGDH, SUGP1, and UGT2B17, strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.08.022","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. From our comparison of multiple methods, we provided a set of reasonable strategies for outlier and imputation handling to process metabolite data and show that inverse normalization by study and half-minimum imputation provide mostly similar results for pooled or meta-analysis. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole-genome sequencing data from 16,359 individuals passing the quality-control filters and discovered 1,775 independent loci associated with 667 metabolites. Among 160 unreported locus-metabolite pairs, we identified associations with loci locating within previously implicated metabolite-associated genes, as well as associations with loci locating in genes such as GAB3 and VSIG4 (located on the X chromosome) that may play a role in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, which were located in well-known metabolic genes such as FADS2, D2HGDH, SUGP1, and UGT2B17, strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.

NHLBI精准医学反式组学项目中循环代谢物的遗传结构和分析实践。
循环代谢物水平在一定程度上反映了人类健康和疾病状况,并可能受到遗传决定因素的影响。已经确定了数百个与循环代谢物相关的基因座;然而,大多数研究结果主要集中在欧洲血统或单一研究分析上。利用国家心脏,肺和血液研究所(NHLBI)精确医学反式组学(TOPMed)计划产生的丰富代谢组学资源,我们在25,058个祖先不同的样本中协调并可访问地编目了1,729种循环代谢物。通过对多种方法的比较,我们提供了一套合理的异常值和归一化处理策略来处理代谢物数据,并表明研究逆归一化和半最小归一化在汇总或荟萃分析中提供了基本相似的结果。根据实际分析框架,我们进一步使用来自16,359个通过质量控制过滤器的个体的全基因组测序数据对1135种代谢物进行了全基因组关联分析,发现了与667种代谢物相关的1,775个独立位点。在160个未报道的基因座-代谢物对中,我们发现了与先前涉及代谢物相关基因中的位点的关联,以及与GAB3和VSIG4(位于X染色体上)等基因中的位点的关联,这些基因座可能在代谢调节中发挥作用。在性别分层分析中,我们发现了85对具有性别二态性的独立基因座-代谢物对,它们位于FADS2、D2HGDH、SUGP1和UGT2B17等众所周知的代谢基因中,有力地支持了探索人类代谢组性别差异的重要性。综上所述,我们的研究描述了遗传对循环代谢物水平的贡献,为理解人类健康提供了额外的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信