{"title":"The Cox-Pólya-Gamma algorithm for flexible Bayesian inference of multilevel survival models.","authors":"Benny Ren, Jeffrey S Morris, Ian Barnett","doi":"10.1093/biomtc/ujaf121","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.