{"title":"A group distributional ICA method for decomposing multi-subject diffusion tensor imaging.","authors":"Guangming Yang, Ben Wu, Jian Kang, Ying Guo","doi":"10.1093/biomtc/ujaf117","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) is a frequently used imaging modality to investigate white matter fiber connections of human brain. DTI provides an important tool for characterizing human brain structural organization. Common goals in DTI analysis include dimension reduction, denoising, and extraction of underlying structure networks. Blind source separation methods are often used to achieve these goals for other imaging modalities. However, there has been very limited work for multi-subject DTI data. Due to the special characteristics of the 3D diffusion tensor measured in DTI, existing methods such as standard independent component analysis (ICA) cannot be directly applied. We propose a Group Distributional ICA (G-DICA) method to fill this gap. G-DICA represents a fundamentally new blind source separation method that separates the parameters in the distribution function of the observed imaging data as a mixture of independent source signals. Decomposing multi-subject DTI using G-DICA uncovers structural networks corresponding to several major white matter fiber bundles in the brain. Through simulation studies and real data applications, the proposed G-DICA method demonstrates superior performance and improved reproducibility compared to the existing method.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf117","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion tensor imaging (DTI) is a frequently used imaging modality to investigate white matter fiber connections of human brain. DTI provides an important tool for characterizing human brain structural organization. Common goals in DTI analysis include dimension reduction, denoising, and extraction of underlying structure networks. Blind source separation methods are often used to achieve these goals for other imaging modalities. However, there has been very limited work for multi-subject DTI data. Due to the special characteristics of the 3D diffusion tensor measured in DTI, existing methods such as standard independent component analysis (ICA) cannot be directly applied. We propose a Group Distributional ICA (G-DICA) method to fill this gap. G-DICA represents a fundamentally new blind source separation method that separates the parameters in the distribution function of the observed imaging data as a mixture of independent source signals. Decomposing multi-subject DTI using G-DICA uncovers structural networks corresponding to several major white matter fiber bundles in the brain. Through simulation studies and real data applications, the proposed G-DICA method demonstrates superior performance and improved reproducibility compared to the existing method.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.