Reza Marzban, Hamed Abiri, Raphaël Pestourie, Ali Adibi
{"title":"HiLAB: A Hybrid Inverse-Design Framework.","authors":"Reza Marzban, Hamed Abiri, Raphaël Pestourie, Ali Adibi","doi":"10.1002/smtd.202500975","DOIUrl":null,"url":null,"abstract":"<p><p>HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization), is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multifunctional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full electromagnetic simulations decreases by an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ∼25% while mitigating chromatic aberrations, a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e00975"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization), is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multifunctional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full electromagnetic simulations decreases by an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ∼25% while mitigating chromatic aberrations, a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.