HiLAB: A Hybrid Inverse-Design Framework.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Reza Marzban, Hamed Abiri, Raphaël Pestourie, Ali Adibi
{"title":"HiLAB: A Hybrid Inverse-Design Framework.","authors":"Reza Marzban, Hamed Abiri, Raphaël Pestourie, Ali Adibi","doi":"10.1002/smtd.202500975","DOIUrl":null,"url":null,"abstract":"<p><p>HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization), is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multifunctional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full electromagnetic simulations decreases by an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ∼25% while mitigating chromatic aberrations, a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e00975"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization), is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multifunctional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full electromagnetic simulations decreases by an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ∼25% while mitigating chromatic aberrations, a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.

HiLAB:混合反设计框架。
HiLAB(混合反设计与潜在空间学习,基于伴随的部分优化和贝叶斯优化)是纳米光子结构反设计的新范式。HiLAB将早期终止拓扑优化(TO)与基于视觉变压器的变分自编码器(VAE)和贝叶斯搜索相结合,通过在降低仿真成本的情况下生成多种自由形状配置,解决了多功能器件设计问题。缩短伴随驱动TO的运行时间,加上随机化的物理参数,可以产生稳健的初始结构。这些结构被VAE压缩到一个紧凑的潜在空间中,使贝叶斯优化能够共同优化几何和物理超参数。至关重要的是,经过训练的VAE可以通过仅调整获取功能来重用其他目标或约束。与传统的to管道倾向于局部最优相比,HiLAB系统地探索了近全局最优,而电磁模拟则少得多。即使考虑到训练开销,全电磁模拟的总数也减少了一个数量级,加速了对制造友好的设备的发现。为了证明其有效性,HiLAB被用于设计红、绿、蓝波长的消色差光束偏转器,实现了~ 25%的平衡衍射效率,同时减轻了色差,性能超越了现有的演示。总的来说,HiLAB为鲁棒的多参数光子设计和快速适应下一代纳米光子挑战提供了一个灵活的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信